A309651 T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
Offset: 1
Examples
The triangle begins: 0 0, 0; 0, 0, 1; 0, 0, 3, 3; 0, 0, 12, 24, 12; 0, 1, 34, 124, 150, 60; 0, 2, 111, 588, 1200, 1080, 360; 0, 6, 315, 2484, 7845, 11970, 8820, 2520; 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160; 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440; ... For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows: { { 1 }, { 2 }, { 3, 4 } } { { 1 }, { 2, 3 }, { 4 } } { { 1, 2 }, { 3 }, { 4 } }
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
Crossrefs
Programs
-
PARI
\\ U(n,k) is A309528 U(n,k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2} T(n,k)={sum(i=2, k, (-1)^(k-i)*binomial(k,i)*U(n,i))} \\ Andrew Howroyd, Aug 12 2019
Formula
Let n>2. For any k >= floor(n/2) we have phi_k(C_n)=k! * Stirling2(n,k)/2n.
T(n, k) = Sum_{i=2..k} (-1)^(k-i)*binomial(k,i)*A309528(n, i). - Andrew Howroyd, Aug 12 2019
Column k is the Moebius transform of column k of A305541. - Andrew Howroyd, Sep 13 2019
Comments