A309654 Numbers k such that k multiplied by the sum of reciprocals of digits is the digit reversal of k.
1, 22, 333, 424, 864, 3663, 4444, 6336, 39993, 46664, 48484, 55555, 64646, 66366, 84448, 88288, 93939, 362436, 488884, 666666, 848848, 884488, 6699966, 6886886, 6969696, 7777777, 8686868, 8866688, 8884888, 9669669, 9993999, 18181818, 26666664, 36484836
Offset: 1
Examples
864 is in the sequence because 864 * (1/8 + 1/6 + 1/4) = 468, the digit reversal of 864.
Links
- Stéphane Rézel, Table of n, a(n) for n = 1..42
Crossrefs
Cf. A037268.
Programs
-
Magma
[k:k in [1..4000000]| not 0 in Set(Intseq(k)) and k*(&+[1/Intseq(k)[i]:i in [1..#Intseq(k)]]) eq Seqint(Reverse(Intseq(k)))]; // Marius A. Burtea, Aug 11 2019
-
Mathematica
Select[Range[365*10^5],#*Total[1/IntegerDigits[#]]==IntegerReverse[#]&]//Quiet (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 09 2020 *)
-
PARI
isok(k) = my(d=digits(k)); if (vecmin(d), k*sum(i=1, #d, 1/d[i]) == fromdigits(Vecrev(d))); \\ Michel Marcus, Aug 11 2019
Comments