cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309677 G.f. A(x) satisfies: A(x) = A(x^3) / (1 - x)^2.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 18, 24, 30, 42, 54, 66, 87, 108, 129, 162, 195, 228, 279, 330, 381, 456, 531, 606, 711, 816, 921, 1068, 1215, 1362, 1563, 1764, 1965, 2232, 2499, 2766, 3120, 3474, 3828, 4290, 4752, 5214, 5805, 6396, 6987, 7740, 8493, 9246, 10194, 11142
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2019

Keywords

Comments

Self-convolution of A062051.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(3^i)))
        end:
    a:= n-> add(b(j, ilog[3](j))*b(n-j, ilog[3](n-j)), j=0..n):
    seq(a(n), n=0..52);  # Alois P. Heinz, Aug 12 2019
  • Mathematica
    nmax = 52; A[] = 1; Do[A[x] = A[x^3]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 52; CoefficientList[Series[Product[1/(1 - x^(3^k))^2, {k, 0, Floor[Log[3, nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(3^k))^2.