cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161809 G.f.: A(x) = exp( Sum_{n>=1} 3*A038500(n) * x^n/n ), where A038500 is the highest power of 3 dividing n.

Original entry on oeis.org

1, 3, 6, 12, 21, 33, 51, 75, 105, 147, 201, 267, 354, 462, 591, 753, 948, 1176, 1455, 1785, 2166, 2622, 3153, 3759, 4470, 5286, 6207, 7275, 8490, 9852, 11415, 13179, 15144, 17376, 19875, 22641, 25761, 29235, 33063, 37353, 42105, 47319, 53124
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2009

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 + ...
log(A(x)) = 3*x + 3*x^2/2 + 9*x^3/3 + 3*x^4/4 + 3*x^5/5 + 9*x^6/6 + ...
From _Paul D. Hanna_, Jul 27 2009: (Start)
TRISECTIONS begin:
T_0(x) = 1 + 12*x + 51*x^2 + 147*x^3 + 354*x^4 + 753*x^5 + ...
T_1(x) = 3 + 21*x + 75*x^2 + 201*x^3 + 462*x^4 + 948*x^5 + ...
T_2(x) = 6 + 33*x + 105*x^2 + 267*x^3 + 591*x^4 + 1176*x^5 + ...
(End)
		

Crossrefs

Partial sums of A309677.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Exp[Sum[3^(IntegerExponent[k, 3] + 1)*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 01 2024 *)
  • PARI
    {a(n)=local(L=sum(m=1, n,3*3^valuation(m,3)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=0,n\3,A=subst(A,x,x^3+x*O(x^n))*(1+x+x^2)/(1-x+x*O(x^n))^2);polcoeff(A,n)} \\ Paul D. Hanna, Jul 27 2009

Formula

From Paul D. Hanna, Jul 27 2009: (Start)
G.f. satisfies: A(x) = A(x^3)*(1+x+x^2)/(1-x)^2.
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
T_1(x)/T_0(x) = 3*(1 + 2*x)/(1 + 7*x + x^2) and
T_2(x)/T_0(x) = 3*(2 + x)/(1 + 7*x + x^2).
(End)

A309678 G.f. A(x) satisfies: A(x) = A(x^4) / (1 - x)^2.

Original entry on oeis.org

1, 2, 3, 4, 7, 10, 13, 16, 22, 28, 34, 40, 50, 60, 70, 80, 97, 114, 131, 148, 175, 202, 229, 256, 296, 336, 376, 416, 472, 528, 584, 640, 718, 796, 874, 952, 1058, 1164, 1270, 1376, 1516, 1656, 1796, 1936, 2116, 2296, 2476, 2656, 2886, 3116, 3346, 3576, 3866, 4156, 4446, 4736, 5096
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 56; A[] = 1; Do[A[x] = A[x^4]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 56; CoefficientList[Series[Product[1/(1 - x^(4^k))^2, {k, 0, Floor[Log[4, nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(4^k))^2.

A309679 G.f. A(x) satisfies: A(x) = A(x^5) / (1 - x)^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 11, 14, 17, 20, 26, 32, 38, 44, 50, 60, 70, 80, 90, 100, 115, 130, 145, 160, 175, 198, 221, 244, 267, 290, 324, 358, 392, 426, 460, 508, 556, 604, 652, 700, 765, 830, 895, 960, 1025, 1110, 1195, 1280, 1365, 1450, 1561, 1672, 1783, 1894, 2005, 2148, 2291, 2434, 2577
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 12 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 58; A[] = 1; Do[A[x] = A[x^5]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 58; CoefficientList[Series[Product[1/(1 - x^(5^k))^2, {k, 0, Floor[Log[5, nmax]] + 1}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=0} 1/(1 - x^(5^k))^2.

A374627 Expansion of Product_{k>=0} 1 / (1 - x^(3^k))^3.

Original entry on oeis.org

1, 3, 6, 13, 24, 39, 64, 99, 144, 212, 303, 417, 578, 786, 1041, 1382, 1809, 2322, 2985, 3798, 4761, 5973, 7434, 9144, 11247, 13743, 16632, 20126, 24225, 28929, 34541, 41061, 48489, 57242, 67320, 78723, 92029, 107238, 124350, 144151, 166641, 191820, 220729, 253368, 289737, 331218, 377811
Offset: 0

Views

Author

Seiichi Manyama, Jul 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=0, logint(N, 3), 1-x^3^k)^3)

Formula

G.f. A(x) satisfies A(x) = A(x^3)/(1 - x)^3.
Showing 1-4 of 4 results.