A161809 G.f.: A(x) = exp( Sum_{n>=1} 3*A038500(n) * x^n/n ), where A038500 is the highest power of 3 dividing n.
1, 3, 6, 12, 21, 33, 51, 75, 105, 147, 201, 267, 354, 462, 591, 753, 948, 1176, 1455, 1785, 2166, 2622, 3153, 3759, 4470, 5286, 6207, 7275, 8490, 9852, 11415, 13179, 15144, 17376, 19875, 22641, 25761, 29235, 33063, 37353, 42105, 47319, 53124
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 + ... log(A(x)) = 3*x + 3*x^2/2 + 9*x^3/3 + 3*x^4/4 + 3*x^5/5 + 9*x^6/6 + ... From _Paul D. Hanna_, Jul 27 2009: (Start) TRISECTIONS begin: T_0(x) = 1 + 12*x + 51*x^2 + 147*x^3 + 354*x^4 + 753*x^5 + ... T_1(x) = 3 + 21*x + 75*x^2 + 201*x^3 + 462*x^4 + 948*x^5 + ... T_2(x) = 6 + 33*x + 105*x^2 + 267*x^3 + 591*x^4 + 1176*x^5 + ... (End)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Exp[Sum[3^(IntegerExponent[k, 3] + 1)*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 01 2024 *)
-
PARI
{a(n)=local(L=sum(m=1, n,3*3^valuation(m,3)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
-
PARI
{a(n)=local(A=1+x);for(i=0,n\3,A=subst(A,x,x^3+x*O(x^n))*(1+x+x^2)/(1-x+x*O(x^n))^2);polcoeff(A,n)} \\ Paul D. Hanna, Jul 27 2009
Formula
From Paul D. Hanna, Jul 27 2009: (Start)
G.f. satisfies: A(x) = A(x^3)*(1+x+x^2)/(1-x)^2.
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
T_1(x)/T_0(x) = 3*(1 + 2*x)/(1 + 7*x + x^2) and
T_2(x)/T_0(x) = 3*(2 + x)/(1 + 7*x + x^2).
(End)