cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309692 Sum of the odd parts appearing among the largest parts of the partitions of n into 3 parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 3, 11, 8, 20, 17, 38, 33, 60, 55, 95, 83, 131, 124, 189, 173, 248, 232, 328, 308, 416, 396, 529, 496, 643, 619, 795, 756, 948, 909, 1134, 1089, 1332, 1287, 1567, 1503, 1803, 1752, 2093, 2021, 2384, 2312, 2720, 2640, 3072, 2992, 3473, 3368
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 12 2019

Keywords

Examples

			Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
                                                          1+1+8
                                                   1+1+7  1+2+7
                                                   1+2+6  1+3+6
                                            1+1+6  1+3+5  1+4+5
                                     1+1+5  1+2+5  1+4+4  2+2+6
                              1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
                       1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
         1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
-----------------------------------------------------------------------
  n  |     3      4      5      6      7      8      9     10      ...
-----------------------------------------------------------------------
a(n) |     1      0      3      3     11      8     20     17      ...
-----------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[ (n - i - j) * Mod[n - i - j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
    LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 1, 0, 3, 3, 11, 8, 20, 17, 38, 33, 60, 55, 95, 83, 131, 124}, 80]
    Table[Total[Select[IntegerPartitions[n,{3}][[;;,1]],OddQ]],{n,0,60}] (* Harvey P. Dale, Oct 13 2023 *)
  • PARI
    concat([0,0,0], Vec(x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ Colin Barker, Aug 23 2019

Formula

a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j) mod 2).
From Colin Barker, Aug 23 2019: (Start)
G.f.: x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
(End)