A309720 Numbers of the form p+q-r = q+r-s where p < q < r < s are consecutive primes.
1, 13, 37, 65, 223, 343, 637, 1087, 1273, 1423, 1445, 1483, 1603, 1687, 1867, 2077, 2135, 2375, 2605, 2683, 2705, 3029, 3523, 3545, 3913, 3997, 4123, 4633, 4783, 4927, 5435, 5735, 6079, 7205, 7295, 7331, 7547, 7589, 7811, 8159, 8227, 8701, 8827, 9085, 9335, 9457, 9461, 9923, 10057
Offset: 1
Keywords
Examples
Consider 4 consecutive primes (3,5,7,11), 3+5-7 = 1 = 5+7-11. 1 is a member of the sequence. Consider 4 consecutive primes (59,61,67,71), 59+61-67 = 53 but, 61+67-71 = 57. These two sums are not equal so neither number is part of the sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
upto[n_]:=Block[{p,q,r,s,t,v}, Union[ Reap[ Do[ {p,q,r,s}=t; v=p+q-r; If[ v==q+r-s <= n, Sow@ v], {t, Partition[ Prime[ Range[ 4+ PrimePi[ 2*n] ]], 4,1]}]] [[2,1]]]]; upto[11000] (* Giovanni Resta, Sep 06 2019 *) #[[1]]+#[[2]]-#[[3]]&/@Select[Partition[Prime[Range[2000]],4,1],#[[1]]+#[[2]]- #[[3]] == #[[2]]+#[[3]]-#[[4]]&] (* Harvey P. Dale, Sep 21 2022 *)
Extensions
More terms from Michel Marcus, Aug 14 2019
Comments