cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309731 Expansion of Sum_{k>=1} k * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 5, 9, 20, 20, 48, 35, 76, 72, 110, 77, 204, 104, 196, 210, 288, 170, 405, 209, 480, 378, 440, 299, 816, 425, 598, 594, 868, 464, 1200, 527, 1104, 858, 986, 910, 1800, 740, 1216, 1170, 1960, 902, 2184, 989, 1980, 1890, 1748, 1175, 3216, 1470, 2475, 1938, 2704, 1484, 3456, 2090
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Dirichlet convolution of natural numbers (A000027) with triangular numbers (A000217).

Crossrefs

Programs

  • Maple
    with(numtheory): seq(n*(tau(n)+sigma(n))/2, n=1..30); # Ridouane Oudra, Nov 28 2019
  • Mathematica
    nmax = 55; CoefficientList[Series[Sum[k x^k/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DirichletConvolve[j, j (j + 1)/2, j, n], {n, 1, 55}]
    Table[n (DivisorSigma[0, n] + DivisorSigma[1, n])/2, {n, 1, 55}]
  • PARI
    a(n)=sumdiv(n,d,binomial(n/d+1,2)*d); \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    a(n)=n*(numdiv(n) + sigma(n))/2; \\ Andrew Howroyd, Aug 14 2019
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Apr 19 2021

Formula

G.f.: Sum_{k>=1} (k*(k + 1)/2) * x^k/(1 - x^k)^2.
a(n) = n * (d(n) + sigma(n))/2.
Dirichlet g.f.: zeta(s-1) * (zeta(s-2) + zeta(s-1))/2.
a(n) = Sum_{k=1..n} k*tau(gcd(n,k)). - Ridouane Oudra, Nov 28 2019