A309805 Maximum number of nonattacking kings placeable on a hexagonal board with edge-length n in Glinski's hexagonal chess.
1, 2, 7, 10, 19, 24, 37, 44, 61, 70, 91, 102, 127, 140, 169, 184, 217, 234, 271, 290, 331, 352, 397, 420, 469, 494, 547, 574, 631, 660, 721, 752, 817, 850, 919, 954, 1027, 1064, 1141, 1180, 1261, 1302, 1387, 1430, 1519, 1564, 1657, 1704, 1801, 1850, 1951, 2002
Offset: 1
Examples
a(1) = 1 . o . a(2) = 2 . . . o . o . . . a(3) = 7 . o . o . . . . o . o . o . . . . o . o . a(4) = 10 . . . . . o . o . o . . . . . . o . o . o . o . . . . . . o . o . o . . . . .
Links
- Chess variants, Glinski's Hexagonal Chess
- Wikipedia, Hexagonal chess - GliĆski's hexagonal chess
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Mathematica
nn:=51; CoefficientList[Series[- (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2),{x, 0, nn}], x] (* Georg Fischer, May 10 2020 *)
-
PARI
a(n) = n^2 - (n\2) - (n\2)^2; \\ Andrew Howroyd, Aug 17 2019
-
Python
def A309805(n): return n**2-(m:=n>>1)*(m+1) # Chai Wah Wu, Apr 04 2024
Formula
a(n) = n^2 - floor(n/2) - floor(n/2)^2.
From Stefano Spezia, Aug 18 2019 (Start)
G.f.: - (1 + x + 3*x^2 + x^3)/((- 1 + x)^3*(1 + x)^2).
E.g.f.: (1/8)*exp(-x)*(-1 + 2*x + exp(2*x)*(1 + 4*x + 6*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 5.
a(n) = (1/16)*(3 + (-1)^(1+2*n) - 4*n + 12*n^2 - 2*(-1)^n*(1 + 2*n)).
a(2*n-1) = A003215(n).
a(2*n) = A049450(n).
(End)