cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A309831 Number of even parts appearing among the smallest parts of the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 24, 28, 36, 42, 52, 60, 73, 83, 99, 112, 132, 148, 172, 192, 221, 245, 279, 308, 348, 382, 429, 469, 523, 570, 632, 686, 757, 819, 899, 970, 1061, 1141, 1243, 1334, 1448, 1550, 1677, 1791, 1932
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 19 2019

Keywords

Examples

			Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |      1           1           2           3           5        ...
--------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, 0, -1, -1, 0, 0, 2, 0,
      0, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9,
      11, 15, 18}, 50]
  • PARI
    concat([0,0,0,0,0,0,0,0,0,0], Vec(x^10 / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)) + O(x^80))) \\ Colin Barker, Oct 10 2019

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} ((l-1) mod 2).
From Colin Barker, Aug 19 2019: (Start)
G.f.: x^10 / ((1 - x)^5*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-11) - a(n-12) + 2*a(n-15) - a(n-18) - a(n-19) + a(n-20) for n>19.
(End) [Recurrence verified by Wesley Ivan Hurt, Aug 24 2019]

A309834 Sum of the even parts appearing among the smallest parts of the partitions of n into 5 parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 4, 6, 10, 12, 18, 22, 30, 36, 50, 58, 76, 90, 114, 132, 164, 188, 228, 260, 314, 354, 420, 474, 556, 622, 722, 804, 924, 1024, 1172, 1292, 1466, 1614, 1820, 1994, 2236, 2442, 2722, 2964, 3294, 3574, 3952, 4282, 4716, 5094
Offset: 0

Views

Author

Wesley Ivan Hurt, Aug 19 2019

Keywords

Examples

			Figure 1: The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |      2           2           4           6          10        ...
--------------------------------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, 1, -2, -2, 0, 0, 4, 0,
      0, -2, -2, 1, 1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 2, 2, 4, 6, 10, 12, 18, 22, 30, 36, 50, 58, 76, 90, 114,
      132, 164, 188, 228, 260}, 50]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} l * ((l-1) mod 2).
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) + a(n-10) - 2*a(n-11) - 2*a(n-12) + 4*a(n-15) - 2*a(n-18) - 2*a(n-19) + a(n-20) + a(n-21) + a(n-22) - 2*a(n-25) + a(n-28) + a(n-29) - a(n-30) for n > 29.
Showing 1-2 of 2 results.