A309985 Maximum determinant of an n X n Latin square.
1, 1, 3, 18, 160, 2325, 41895, 961772, 26978400, 929587995
Offset: 0
Examples
An example of an 8 X 8 Latin square with maximum determinant is [7 1 3 4 8 2 5 6] [1 7 4 3 6 5 2 8] [3 4 1 7 2 6 8 5] [4 3 7 1 5 8 6 2] [8 6 2 5 4 7 1 3] [2 5 6 8 7 3 4 1] [5 2 8 6 1 4 3 7] [6 8 5 2 3 1 7 4]. An example of a 9 X 9 Latin square with maximum determinant is [9 4 3 8 1 5 2 6 7] [3 9 8 5 4 6 1 7 2] [4 1 9 3 2 8 7 5 6] [1 2 4 9 7 3 6 8 5] [8 3 5 6 9 7 4 2 1] [2 7 1 4 6 9 5 3 8] [5 8 6 7 3 2 9 1 4] [7 6 2 1 5 4 8 9 3] [6 5 7 2 8 1 3 4 9]. An example of a 10 X 10 Latin square with abs(determinant) = 36843728625 is a circulant matrix with first row [1, 3, 7, 9, 8, 6, 5, 4, 2, 10], but it is not known if this is the best possible. - _Kebbaj Mohamed Reda_, Nov 27 2019 (reworded by _Hugo Pfoertner_)
Links
- Brendan McKay, Latin squares.
- Mathematics Stack Exchange, Maximum determinant of Latin squares, (2014), (2016).
Extensions
a(9) from Hugo Pfoertner, Aug 30 2019
a(0)=1 prepended by Alois P. Heinz, Oct 02 2019
Comments