A316262 Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.
4, 6, 8, 10, 14, 15, 20, 21, 24, 25, 26, 30, 35, 36, 39, 40, 45, 46, 50, 52, 54, 55, 56, 62, 65, 66, 68, 69, 72, 76, 78, 82, 84, 88, 90, 91, 92, 93, 94, 98, 102, 104, 108, 114, 117, 118, 120, 124, 126, 130, 132, 134, 136, 140, 141, 143, 144, 146, 147, 150
Offset: 1
Keywords
Examples
2 divides both 4 and floor(phi*4)=6, so 4 is a term.
Programs
-
Maple
select(n->gcd(n,floor(((sqrt(5)-1)/2)*n))>1,[$1..160]); # Muniru A Asiru, Jun 28 2018
-
Mathematica
Select[Range[150], GCD[#, Floor[GoldenRatio #]] > 1 &] (* Giovanni Resta, Jun 28 2018 *)
-
PARI
is(n) = gcd(n, floor((sqrt(5)-1)/2*n)) > 1 \\ Felix Fröhlich, Jun 29 2018
-
Python
from math import gcd, isqrt from itertools import count, islice def A316262_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:gcd(n,n+isqrt(5*n**2)>>1)>1,count(max(startvalue,1))) A316262_list = list(islice(A316262_gen(),30)) # Chai Wah Wu, Aug 10 2022