cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316262 Numbers k such that gcd(k, floor(phi*k)) > 1, where phi is the golden ratio.

Original entry on oeis.org

4, 6, 8, 10, 14, 15, 20, 21, 24, 25, 26, 30, 35, 36, 39, 40, 45, 46, 50, 52, 54, 55, 56, 62, 65, 66, 68, 69, 72, 76, 78, 82, 84, 88, 90, 91, 92, 93, 94, 98, 102, 104, 108, 114, 117, 118, 120, 124, 126, 130, 132, 134, 136, 140, 141, 143, 144, 146, 147, 150
Offset: 1

Views

Author

David V. Feldman, Jun 27 2018

Keywords

Examples

			2 divides both 4 and floor(phi*4)=6, so 4 is a term.
		

Crossrefs

Programs

  • Maple
    select(n->gcd(n,floor(((sqrt(5)-1)/2)*n))>1,[$1..160]); # Muniru A Asiru, Jun 28 2018
  • Mathematica
    Select[Range[150], GCD[#, Floor[GoldenRatio #]] > 1 &] (* Giovanni Resta, Jun 28 2018 *)
  • PARI
    is(n) = gcd(n, floor((sqrt(5)-1)/2*n)) > 1 \\ Felix Fröhlich, Jun 29 2018
    
  • Python
    from math import gcd, isqrt
    from itertools import count, islice
    def A316262_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:gcd(n,n+isqrt(5*n**2)>>1)>1,count(max(startvalue,1)))
    A316262_list = list(islice(A316262_gen(),30)) # Chai Wah Wu, Aug 10 2022