cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A321519 Let d(n,i), i = 1..k be the k divisors of n^2 + 1 (the number 1 is not counted). a(n) is the number of ordered pairs d(n,i) < d(n,j) such that gcd(d(n,i), d(n,j)) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 6, 0, 1, 0, 6, 2, 1, 0, 6, 1, 6, 0, 1, 0, 6, 1, 1, 1, 6, 2, 6, 1, 1, 0, 6, 2, 1, 0, 2, 1, 11, 1, 1, 1, 25, 1, 1, 1, 1, 1, 6, 0, 6, 0, 16, 1, 1, 1, 1, 1, 6, 1, 1, 0, 6, 3, 1, 2, 1, 6, 25, 0, 6, 1, 6, 1, 1, 1, 6, 2, 25, 0, 1, 1
Offset: 1

Views

Author

Michel Lagneau, Nov 12 2018

Keywords

Comments

Terms only depends on prime signature of n^2+1. - David A. Corneth, Nov 14 2018
We observe an interesting statistic for n <= 10^5: the four values of a(n) = 0, 1, 6, 25 represent more than 82% (see the table below).
a(A005574(n)) = 0, a(A085722(n)) = 1, a(A272078(n)) = 6, a(A316351(n)) = 25.
In the general case, a(k) = m if k^2+1 = p*q^m, m = 1, 2, 3, ... with p, q primes.
+--------------+-----------------------+------------+
| | number of occurrences | |
| a(n) | for n <= 10^5 | percentage |
+--------------+-----------------------+------------+
| 0 | 6656 | 6.656% |
| 1 | 23255 | 23.255% |
| 6 | 31947 | 31.947% |
| 25 | 20461 | 20.461% |
| other values | 17681 | 17.681% |
+--------------+-----------------------+------------+

Examples

			a(13) = 6 because the divisors {d(i)} of 13^2 + 1 = 170 (without the number 1)  are  {2, 5, 10, 17, 34, 85, 170}, and gcd(d(i), d(j)) = 1 for the 6 following pairs of elements of {d(i)}: (2, 5), (2, 17), (2, 85), (5, 17), (5, 34) and (10, 17).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^3:
    for n from 1 to nn do:
      it:=0:d:=divisors(n^2+1):n0:=nops(d):
       for k from 2 to n0-1 do:
        for l from k+1 to n0 do:
         if gcd(d[k],d[l])= 1
          then
          it:=it+1
          else
         fi:
       od:
      od:
      printf(`%d, `,it):
    od:
  • Mathematica
    f[n_] := (DivisorSigma[0, n^2] - 1)/2 - DivisorSigma[0, n] + 1; Map[f, Range[0,100]^2+1] (* Amiram Eldar, Nov 14 2018 after Robert G. Wilson v at A089233 *)
  • PARI
    a(n) = {my(d=divisors(n^2+1)); sum(k=2, #d, sum(j=2, k-1, gcd(d[k], d[j]) == 1));} \\ Michel Marcus, Nov 12 2018

Formula

a(n) = A089233(n^2+1). - Michel Marcus, Nov 13 2018
Showing 1-1 of 1 results.