A316939 Triangle read by rows formed using Pascal's rule except that n-th row begins and ends with Fibonacci(n+2).
1, 2, 2, 3, 4, 3, 5, 7, 7, 5, 8, 12, 14, 12, 8, 13, 20, 26, 26, 20, 13, 21, 33, 46, 52, 46, 33, 21, 34, 54, 79, 98, 98, 79, 54, 34, 55, 88, 133, 177, 196, 177, 133, 88, 55, 89, 143, 221, 310, 373, 373, 310, 221, 143, 89, 144, 232, 364, 531, 683, 746, 683, 531, 364, 232, 144, 233, 376, 596, 895, 1214, 1429
Offset: 0
Examples
Triangle begins: 1; 2, 2; 3, 4, 3; 5, 7, 7, 5; 8, 12, 14, 12, 8; 13, 20, 26, 26, 20, 13; 21, 33, 46, 52, 46, 33, 21; 34, 54, 79, 98, 98, 79, 54, 34; 55, 88, 133, 177, 196, 177, 133, 88, 55; ...
Crossrefs
Programs
-
Maple
f:= proc(n,k) option remember; if k=0 or k=n then combinat:-fibonacci(n+2) else procname(n-1,k)+procname(n-1,k-1) fi end proc: for n from 0 to 10 do seq(f(n,k),k=0..n) od; # Robert Israel, Sep 20 2018
-
Mathematica
t={}; Do[r={}; Do[If[k==0||k==n, m=Fibonacci[n + 2], m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t // Flatten
Extensions
Incorrect g.f. removed by Georg Fischer, Feb 18 2020
Comments