A316563 Maximum order of an element in the special linear group SL(2, Z(n)).
1, 3, 6, 6, 10, 12, 14, 8, 18, 30, 22, 12, 26, 42, 30, 16, 34, 18, 38, 30, 42, 66, 46, 24, 50, 78, 54, 42, 58, 60, 62, 32, 66, 102, 70, 36, 74, 114, 78, 40, 82, 84, 86, 66, 90, 138, 94, 48, 98, 150, 102, 78, 106, 54, 110, 56, 114, 174, 118, 60, 122, 186, 126
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Programs
-
GAP
Concatenation([1], List([2..15], n->Maximum(List(SL(2, Integers mod n), Order))));
-
PARI
MatOrder(M)={my(id=matid(#M), k=1, N=M); while(N<>id, k++;N=N*M); k} a(n)={my(m=0); for(a=0, n-1, for(b=0, n-1, for(c=0, n-1, for(d=0, n-1, my(M=Mod([a, b; c, d], n)); if(matdet(M)==1, m=max(m, MatOrder(M))))))); m}