A316584 Array read by antidiagonals: T(n,k) is the number of elements x in GL(2,Z_n) with x^k == I mod n where I is the identity matrix.
1, 1, 1, 1, 4, 1, 1, 3, 14, 1, 1, 4, 9, 28, 1, 1, 1, 20, 9, 32, 1, 1, 6, 1, 64, 21, 56, 1, 1, 1, 30, 1, 184, 27, 58, 1, 1, 4, 1, 60, 25, 80, 171, 176, 1, 1, 3, 32, 1, 72, 1, 100, 33, 110, 1, 1, 4, 9, 64, 1, 180, 1, 640, 297, 128, 1, 1, 1, 14, 9, 224, 1, 846, 1, 164, 63, 134, 1
Offset: 1
Examples
Array begins: ====================================================== n\k | 1 2 3 4 5 6 7 8 9 10 ------+----------------------------------------------- 1 | 1 1 1 1 1 1 1 1 1 1 ... 2 | 1 4 3 4 1 6 1 4 3 4 ... 3 | 1 14 9 20 1 30 1 32 9 14 ... 4 | 1 28 9 64 1 60 1 64 9 28 ... 5 | 1 32 21 184 25 72 1 224 21 80 ... 6 | 1 56 27 80 1 180 1 128 27 56 ... 7 | 1 58 171 100 1 846 49 184 171 58 ... 8 | 1 176 33 640 1 432 1 1024 33 176 ... 9 | 1 110 297 164 1 1566 1 272 729 110 ... 10 | 1 128 63 736 25 432 1 896 63 320 ... 11 | 1 134 111 244 1325 354 1 464 111 5950 ... 12 | 1 392 81 1280 1 1800 1 2048 81 392 ... 13 | 1 184 549 1096 1 2736 469 1408 549 184 ... 14 | 1 232 513 400 1 5076 49 736 513 232 ... 15 | 1 448 189 3680 25 2160 1 7168 189 1120 ... ...
Links
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Formula
T(n,k) = Sum_{d|k} A316566(n, d).
Conjecture: T(p,p) = p^2 for p prime.
Comments