cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316630 Numbers k such that 10k+1, 10k+3, 10k+7, and 10k+9 are all composite, and k == 1 (mod 3).

Original entry on oeis.org

133, 196, 232, 256, 298, 328, 397, 403, 406, 418, 430, 457, 484, 640, 643, 664, 709, 727, 742, 802, 847, 865, 898, 907, 970, 991, 1012, 1054, 1057, 1081, 1087, 1096, 1120, 1153, 1156, 1213, 1231, 1246, 1327, 1354, 1360, 1381, 1411, 1423, 1426, 1435, 1480, 1504
Offset: 1

Views

Author

Patrick A. Thomas, Jul 09 2018

Keywords

Comments

The sequence contains all numbers of the form 50151*m + 42175. - Michael B. Porter, Jul 16 2018
If m is in the sequence, then so is m + 3*(10*m+1)*(10*m+3)*(10*m+7)*(10*m+9)*k for all k. - Robert Israel, Aug 08 2018

Examples

			1331 = 11^3, 1333 = 31*43, 1337 = 7*191, 1339 = 13*103, and 133 == 1 (mod 3), so 133 is a sequence member.
		

Crossrefs

Programs

  • MATLAB
    m=1; for s=1:510 v=[30*s+11,30*s+13,30*s+17,30*s+19]; if isprime(v)==0  sol(m)=3*s+1; m=m+1;end; end; sol % Marius A. Burtea, Sep 17 2019
    
  • Magma
    [3*s+1: s in [0..510] | forall{30*s+k: k in [11, 13, 17, 19] | not IsPrime(30*s+k)}]; // Marius A. Burtea, Sep 17 2019
  • Maple
    remove(t -> ormap(isprime, [10*t+1,10*t+3,10*t+7,10*t+9]), [seq(k,k=1..2000,3)]); # Robert Israel, Aug 08 2018
  • Mathematica
    Select[1 + 3 Range@510, Union[ PrimeQ[10 # + {1, 3, 7, 9}]] == {False} &] (* Robert G. Wilson v, Jul 16 2018 *)
    Select[Range[1,2000,3],AllTrue[10#+{1,3,7,9},CompositeQ]&]  (* Harvey P. Dale, Feb 24 2024 *)
  • PARI
    ok(k)={if(k%3==1, for(i=0, 4, if(isprime(10*k+2*i+1), return(0))); 1, 0)} \\ Andrew Howroyd, Jul 10 2018