A316630 Numbers k such that 10k+1, 10k+3, 10k+7, and 10k+9 are all composite, and k == 1 (mod 3).
133, 196, 232, 256, 298, 328, 397, 403, 406, 418, 430, 457, 484, 640, 643, 664, 709, 727, 742, 802, 847, 865, 898, 907, 970, 991, 1012, 1054, 1057, 1081, 1087, 1096, 1120, 1153, 1156, 1213, 1231, 1246, 1327, 1354, 1360, 1381, 1411, 1423, 1426, 1435, 1480, 1504
Offset: 1
Examples
1331 = 11^3, 1333 = 31*43, 1337 = 7*191, 1339 = 13*103, and 133 == 1 (mod 3), so 133 is a sequence member.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- C. K. Caldwell, The Prime Pages Top Twenty: Quadruplet, list of largest known prime quadruplets.
Programs
-
MATLAB
m=1; for s=1:510 v=[30*s+11,30*s+13,30*s+17,30*s+19]; if isprime(v)==0 sol(m)=3*s+1; m=m+1;end; end; sol % Marius A. Burtea, Sep 17 2019
-
Magma
[3*s+1: s in [0..510] | forall{30*s+k: k in [11, 13, 17, 19] | not IsPrime(30*s+k)}]; // Marius A. Burtea, Sep 17 2019
-
Maple
remove(t -> ormap(isprime, [10*t+1,10*t+3,10*t+7,10*t+9]), [seq(k,k=1..2000,3)]); # Robert Israel, Aug 08 2018
-
Mathematica
Select[1 + 3 Range@510, Union[ PrimeQ[10 # + {1, 3, 7, 9}]] == {False} &] (* Robert G. Wilson v, Jul 16 2018 *) Select[Range[1,2000,3],AllTrue[10#+{1,3,7,9},CompositeQ]&] (* Harvey P. Dale, Feb 24 2024 *)
-
PARI
ok(k)={if(k%3==1, for(i=0, 4, if(isprime(10*k+2*i+1), return(0))); 1, 0)} \\ Andrew Howroyd, Jul 10 2018
Comments