cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316725 Generalized 27-gonal (or icosiheptagonal) numbers: m*(25*m - 23)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 24, 27, 73, 78, 147, 154, 246, 255, 370, 381, 519, 532, 693, 708, 892, 909, 1116, 1135, 1365, 1386, 1639, 1662, 1938, 1963, 2262, 2289, 2611, 2640, 2985, 3016, 3384, 3417, 3808, 3843, 4257, 4294, 4731, 4770, 5230, 5271, 5754, 5797, 6303, 6348, 6877, 6924, 7476, 7525, 8100, 8151, 8749, 8802
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2018

Keywords

Comments

Note that in the sequences of generalized k-gonal numbers always a(3) = k. In this case k = 27.
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, with k >= 5.
A general formula for the generalized k-gonal numbers is given by m*((k-2)*m-k+4)/2, with m = 0, +1, -1, +2, -2, +3, -3, ..., k >= 5.
Partial sums of A317323. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), this sequence (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,24,27,73];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 16 2018
  • Maple
    a:= n-> (m-> m*(25*m-23)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jul 11 2018
  • Mathematica
    CoefficientList[Series[-x (x^2 + 23x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 53}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 24, 27, 73, 78, 147}, 53] (* Robert G. Wilson v, Jul 28 2018; corrected by Georg Fischer, Apr 03 2019 *)
    nn=30; Sort[Table[n (25 n - 23) / 2, {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 11 2018
    

Formula

From Colin Barker, Jul 11 2018: (Start)
G.f.: x*(1 + 23*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(25*n + 46)/8 for n even.
a(n) = (25*n - 21)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 2*(25 + 23*Pi*cot(2*Pi/25))/529. - Amiram Eldar, Mar 01 2022