A316795 Number of aperiodic rooted trees on n nodes with locally distinct multiplicities.
1, 1, 1, 1, 2, 5, 8, 17, 30, 55, 101, 194, 352, 663, 1227, 2275, 4225, 7877, 14600, 27158, 50414, 93666, 173972, 323286, 600353, 1115407, 2071843, 3848794, 7149196, 13280874, 24669606, 45827047, 85126845, 158131764, 293742200, 545655290, 1013598733
Offset: 1
Keywords
Examples
The a(7) = 8 trees: ((((((o)))))) (((oo(o)))) ((oo((o)))) ((o(o)(o))) ((ooo(o))) (oo(((o)))) (ooo((o))) (oooo(o))
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Gus Wiseman, The a(9) = 30 aperiodic trees with locally distinct multiplicities.
Programs
-
Mathematica
strut[n_]:=strut[n]=If[n===1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@IntegerPartitions[n-1],And[UnsameQ@@Length/@Split[#],GCD@@Length/@Split[#]==1]&]]; Table[Length[strut[n]],{n,15}]
-
PARI
C(v,n)={my(recurse(r,b,g,p,k)=if(!r, g==1, sum(m=1, r, if(!bittest(b,m), sum(i=1, min(r\m, p), my(f=if(i==p, k+1, 1)); if(v[i]>=f, (v[i]-f+1)*self()(r-m*i, bitor(b, 1<
Andrew Howroyd, Feb 08 2020
Extensions
Terms a(26) and beyond from Andrew Howroyd, Feb 08 2020
Comments