A316907 Numbers k such that 2^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.
7957, 23377, 35333, 42799, 49981, 60787, 129889, 150851, 162193, 164737, 241001, 249841, 253241, 256999, 280601, 318361, 452051, 481573, 556169, 580337, 617093, 665333, 722201, 838861, 877099, 1016801, 1251949, 1252697, 1325843, 1507963, 1534541, 1678541, 1826203, 1969417
Offset: 1
Keywords
Examples
7957 = 73*109 is pseudoprime and 72 does not divide 7956 (of course also 108 does not divide 7956), note that 72 does not divide 108. 617093 = 43*113*127 is the smallest such pseudoprime with more than two prime factors.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Select[Range[2*10^6], PowerMod[2, # - 1, #] == 1 &], Function[k, AllTrue[FactorInteger[k][[All, 1]] - 1, Mod[k - 1, #] != 0 &]]] (* Michael De Vlieger, Jul 20 2018 *)
Extensions
a(7)-a(34) from Michel Marcus, Jul 16 2018
Comments