A316946
A triple of positive integers (n,p,k) is admissible if there exist at least two different multisets of k positive integers, {x_1,x_2,...,x_k} and {y_1,y_2,...,y_k}, such that x_1+x_2+...+x_k = y_1+y_2+...+y_k = n and x_1x_2...x_k = y_1y_2...y_k = p. For each n, let A(n) = {p:(n,p,k) is admissible for some k}, and let a(n) = |A(n)|.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 6, 10, 14, 19, 26, 33, 43, 54, 68, 87, 106, 129, 157, 187, 226, 269, 319, 378, 445, 521, 610, 712, 825, 952, 1099, 1261, 1443, 1655, 1889, 2148, 2440, 2769, 3135, 3542, 4000, 4494, 5049, 5661, 6346, 7099, 7938, 8857, 9862, 10972, 12190, 13532, 15000, 16611, 18366
Offset: 1
a(15) = 6 since A(15) = {36,40,48,72,96,144}:
p = 36 [9, 2, 2, 1, 1], [6, 6, 1, 1, 1]
p = 40 [10, 2, 2, 1], [8, 5, 1, 1]
p = 48 [6, 2, 2, 2, 1, 1, 1], [4, 4, 3, 1, 1, 1, 1]
p = 72 [9, 2, 2, 2], [8, 3, 3, 1], [6, 6, 2, 1],
p = 96 [8, 3, 2, 2], [6, 4, 4, 1], [6, 2, 2, 2, 2, 1], [4, 4, 3, 2, 1, 1]
p = 144 [6, 3, 2, 2, 2], [4, 4, 3, 3, 1].
-
Do[repeats = {}; Do[intpart = IntegerPartitions[sum, {n}]; prod = Tally[Table[Times @@ intpart[[i]], {i, Length[intpart]}]]; repeatprod = Select[prod, #[[2]] > 1 &]; If[repeatprod != {}, repeats = Join[repeats, Transpose[repeatprod][[1]]]], {n, 3, sum - 8}]; output = DeleteDuplicates[repeats]; Print[sum, " ", Length[output]], {sum, 12, 100}]
A317254
a(n) is the smallest integer such that for all s >= a(n), there are at least n-1 different partitions of s into n parts, namely {x_{11},x_{12},...,x_{1n}}, {x_{21},x_{22},...,x_{2n}},..., and {x_{n-1,1},x_{n-1,2},...,x_{n-1,n}}, such that the products of every set are equal.
Original entry on oeis.org
19, 23, 23, 26, 27, 29, 31, 32, 35, 36, 38, 40, 42, 44, 45, 47, 49, 50, 52, 53, 54, 55, 57, 58, 59, 61, 62, 63, 64, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 101
Offset: 3
a(3)=19. From s=19 onward, there are at least 2 different partitions of s into 3 parts with equal products:
s=19: {12,4,3} & {9,8,2}:
12 + 4 + 3 = 9 + 8 + 2 = 19;
12 * 4 * 3 = 9 * 8 * 2 = 144;
s=20: {15,3,2} & {10,9,1}:
15 + 3 + 2 = 10 + 9 + 1 = 20;
15 * 3 * 2 = 10 * 9 * 1 = 90;
s=21: {16,3,2} & {12,8,1}:
16 + 3 + 2 = 12 + 8 + 1 = 21;
16 * 3 * 2 = 12 * 8 * 1 = 96.
-
Do[maxsumnotwork = 0; Do[intpart = IntegerPartitions[sum, {n}]; prod = Table[Times @@ intpart[[i]], {i, Length[intpart]}]; prodtally = Tally[prod]; repeatprod = Select[prodtally, #[[2]] >= n - 1 &]; If[repeatprod == {}, maxsumnotwork = sum], {sum, 12, 200}]; Print[n, " ", maxsumnotwork + 1], {n, 3, 60}]
A334246
A triple of positive integers (n,p,k) is admissible if there exist at least two different multisets of k positive integers, {x_1,x_2,...,x_k} and {y_1,y_2,...,y_k}, such that x_1+x_2+...+x_k = y_1+y_2+...+y_k = n and x_1x_2...x_k = y_1y_2...y_k = p. For each n, let A(n) = {(p,k):(n,p,k) is admissible for some k}; then a(n) = |A(n)|.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 7, 13, 20, 29, 44, 66, 90, 129, 174, 232, 306, 406, 520, 675, 851, 1068, 1329, 1640, 2001, 2460, 2989, 3615, 4342, 5202, 6204, 7381, 8697, 10256, 12042, 14069, 16435, 19090, 22141, 25607, 29534
Offset: 1
For n=12: {(4, 48)}.
For n=13: {(3, 36), (5, 48)}.
For n=14: {(4, 36), (3, 40), (3, 72), (5, 96), (6, 48)}.
For n=15: {(5, 36), (5, 144), (4, 72), (4, 40), (6, 96), (7, 48), (4, 96)}.
- Jay Bennett, Riddle of the week #34: Two wizards ride a bus, Popular Mechanics. Hearst Communications, Inc., 4 Aug. 2017. 12 Jun. 2018 Accessed.
- John B. Kelly, Partitions with equal products, Proc. Amer. Math. Soc. 15 (1964), 987-990.
- Tanya Khovanova, Conway's Wizards, arXiv:1210.5460 [math.HO], 2012.
If only counting unique k:
A316945; if only counting unique p:
A316946.
See
A140437 for another sequence related to the wizards problem.
-
from collections import Counter
from functools import reduce
def partitions(n, I=1):
yield (n,)
for i in range(I, n//2 + 1):
for p in partitions(n-i, i):
yield (i,) + p
def p(i): #ret partitions of i, sorted by part number and product of parts
return sorted(
[
(
len(p),
reduce(
(lambda x, y: x * y), p)
)
for p in partitions(i)
]
)
def a(p_list): #returns number of pairs appearing more than once
return len([x for x,y in Counter(p_list).most_common() if y > 1])
print(a(p(i))) # Will print the value of a(i)
Showing 1-3 of 3 results.
Comments