cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A316982 Numbers k such that replacing each digit d in the decimal expansion of k with d^3 yields a prime each time, when done recursively three times.

Original entry on oeis.org

11, 31, 101, 173, 1307, 1873, 10111, 11923, 12209, 14767, 20357, 20729, 21149, 22003, 22151, 29261, 43681, 43891, 52033, 52211, 55231, 58121, 65011, 70027, 70399, 80569, 100087, 101111, 101401, 102079, 102113, 120091, 151931, 163669, 172001, 200501, 201113, 203831
Offset: 1

Views

Author

K. D. Bajpai, Jul 18 2018

Keywords

Examples

			173 is a term because replacing each digit d with d^3, recursively three times, a prime number is obtained: 173 -> 134327 (prime); 134327 -> 12764278343 (prime); 12764278343 -> 18343216648343512276427 (prime).
1873 is a term because replacing each digit d with d^3, recursively three times, a prime number is obtained: 1873 -> 151234327 (prime); 151234327 -> 1125182764278343 (prime); 1125182764278343 -> 11812515128343216648343512276427 (prime).
		

Crossrefs

A004022 is a subsequence.

Programs

  • Mathematica
    A316982 = {}; Do[a=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[n]^3)]]; b=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[a]^3)]]; c=FromDigits[Flatten[IntegerDigits /@ (IntegerDigits[b]^3)]]; If[PrimeQ[a] && PrimeQ[b] && PrimeQ[c], AppendTo[A316982, n]], {n,300000}]; A316982 (* or *)
    c[n_] := FromDigits@ Flatten@ IntegerDigits[IntegerDigits[n]^3]; Select[Range[204000], PrimeQ[x = c@#] && PrimeQ[y = c@x] && PrimeQ@c@y &] (* Giovanni Resta, Jul 18 2018 *)
    p3[n_]:=Rest[NestList[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^3)]]&,n,3]]; Select[Range[205000],AllTrue[p3[#],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 11 2019 *)
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    replace_digits(n) = my(d=digits(n), e=[]); for(x=1, #d, my(f=digits(d[x]^3)); if(f==[], e=concat(e, [0]), for(y=1, #f, e=concat(e, f[y])))); eva(e)
    is(n) = my(x=n, i=0); while(i < 3, x=replace_digits(x); if(!ispseudoprime(x), break, i++)); i >= 3 \\ Felix Fröhlich, Oct 24 2018