A317051 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 9 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 1, 1, 9, 1, 18, 1, 27, 81, 1, 36, 243, 1, 45, 486, 729, 1, 54, 810, 2916, 1, 63, 1215, 7290, 6561, 1, 72, 1701, 14580, 32805, 1, 81, 2268, 25515, 98415, 59049, 1, 90, 2916, 40824, 229635, 354294, 1, 99, 3645, 61236, 459270, 1240029, 531441, 1, 108, 4455, 87480, 826686, 3306744, 3720087
Offset: 0
Examples
Triangle begins: 1; 1; 1, 9; 1, 18; 1, 27, 81; 1, 36, 243; 1, 45, 486, 729; 1, 54, 810, 2916; 1, 63, 1215, 7290, 6561; 1, 72, 1701, 14580, 32805; 1, 81, 2268, 25515, 98415, 59049; 1, 90, 2916, 40824, 229635, 354294; 1, 99, 3645, 61236, 459270, 1240029, 531441; 1, 108, 4455, 87480, 826686, 3306744, 3720087;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100
Links
Programs
-
GAP
Flat(List([0..13],n->List([0..Int(n/2)],k->9^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 20 2018
-
Magma
/* As triangle */ [[9^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 9 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten Table[9^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
PARI
T(n, k) = 9^k*binomial(n-k,k); tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
Formula
T(n,k) = 9^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Comments