cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317051 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 9 * T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 9, 1, 18, 1, 27, 81, 1, 36, 243, 1, 45, 486, 729, 1, 54, 810, 2916, 1, 63, 1215, 7290, 6561, 1, 72, 1701, 14580, 32805, 1, 81, 2268, 25515, 98415, 59049, 1, 90, 2916, 40824, 229635, 354294, 1, 99, 3645, 61236, 459270, 1240029, 531441, 1, 108, 4455, 87480, 826686, 3306744, 3720087
Offset: 0

Views

Author

Zagros Lalo, Jul 20 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013616 ((1+9*x)^n) and along skew diagonals pointing top-left in center-justified triangle given in A038291 ((9+x)^n).
The coefficients in the expansion of 1/(1-x-9*x^2) are given by the sequence generated by the row sums.
The row sums are Generalized Fibonacci numbers (see A015445).
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 3.5413812651491... ((1+sqrt(37))/2), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1, 9;
  1, 18;
  1, 27, 81;
  1, 36, 243;
  1, 45, 486, 729;
  1, 54, 810, 2916;
  1, 63, 1215, 7290, 6561;
  1, 72, 1701, 14580, 32805;
  1, 81, 2268, 25515, 98415, 59049;
  1, 90, 2916, 40824, 229635, 354294;
  1, 99, 3645, 61236, 459270, 1240029, 531441;
  1, 108, 4455, 87480, 826686, 3306744, 3720087;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100

Crossrefs

Row sums give A015445.

Programs

  • GAP
    Flat(List([0..13],n->List([0..Int(n/2)],k->9^k*Binomial(n-k,k)))); # Muniru A Asiru, Jul 20 2018
    
  • Magma
    /* As triangle */ [[9^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
  • Mathematica
    t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 9 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
    Table[9^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
  • PARI
    T(n, k) = 9^k*binomial(n-k,k);
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
    

Formula

T(n,k) = 9^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).