cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317165 Number of permutations of [n*(n+1)/2] with distinct lengths of increasing runs.

Original entry on oeis.org

1, 1, 5, 241, 188743, 2734858573, 892173483721887, 7469920269852025033699, 1841449549508718383891930251607, 14973026148724796464136435753195418043885, 4467880642339303169146446437381463615730321314015457, 53810913396105573079543194840166969124601447333276658546225661505
Offset: 0

Views

Author

Alois P. Heinz, Jul 23 2018

Keywords

Crossrefs

Programs

  • Maple
    g:= (n, s)-> `if`(n in s, 0, 1):
    b:= proc(u, o, t, s) option remember; `if`(u+o=0, g(t, s),
          `if`(g(t, s)=1, add(b(u-j, o+j-1, 1, s union {t})
           , j=1..u), 0)+ add(b(u+j-1, o-j, t+1, s), j=1..o))
        end:
    a:= n-> b(n*(n+1)/2, 0$2, {}):
    seq(a(n), n=0..8);
  • Mathematica
    g[n_, s_] := If[MemberQ[s, n], 0, 1];
    b[u_, o_, t_, s_] := b[u, o, t, s] = If[u + o == 0, g[t, s],
         If[g[t, s] == 1, Sum[b[u - j, o + j - 1, 1, s ~Union~ {t}],
         {j, u}], 0] + Sum[b[u + j - 1, o - j, t + 1, s], {j, o}]];
    a[n_] := b[n(n+1)/2, 0, 0, {}];
    Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Sep 01 2021, after Alois P. Heinz *)

Formula

a(n) = A317166(A000217(n)).
a(n) >= A317273(n).