A317179 Palindromic invertible primes.
16661, 19991, 1160611, 1190911, 1688861, 1988891, 101616101, 101919101, 106111601, 106191601, 109111901, 109161901, 116010611, 116696611, 119010911, 119969911, 160080061, 160101061, 166080661, 169060961, 188868881, 188898881, 190080091, 190101091, 196090691, 199080991
Offset: 1
Examples
16661 is a term because it is a prime and a palindrome as well; when rotated by 180 degrees it becomes 19991 that is also a prime.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..15175
- C. K. Caldwell, The Prime Glossary, strobogrammatic
- Wikipedia, Strobogrammatic number
Programs
-
Mathematica
Select[ lst = {}; fQ[n_] := Block[{allset = {0, 1, 6, 8, 9}, id = IntegerDigits@n}, rid = Reverse[id /. {6 -> 9, 9 -> 6}];Union@Join[id, allset] == allset && PrimeQ@FromDigits@rid && rid != id]; Do[If[PrimeQ@n && fQ@n, AppendTo[lst, n]], {n, 1090000000}]; lst, # ==FromDigits[Reverse[IntegerDigits[#]]] &]
-
PARI
is_palandinv(n) = my(d=digits(n), ineligible_d=[2, 3, 4, 5, 7]); d==Vecrev(d) && #setintersect(vecsort(d), ineligible_d)==0 invert(n) = my(d=digits(n), e=[]); for(k=1, #d, if(d[k]==0, e=concat(e, [0])); if(d[k]==1, e=concat(e, [1])); if(d[k]==6, e=concat(e, [9])); if(d[k]==8, e=concat(e, [8])); if(d[k]==9, e=concat(e, [6]))); subst(Pol(e), x, 10) is(n) = my(d=digits(n)); is_palandinv(n) && n!=invert(n) && ispseudoprime(invert(n)) forprime(p=1, 2e8, if(is(p), print1(p, ", "))) \\ Felix Fröhlich, Jul 24 2018
Comments