cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317210 Composite numbers k+1 such that A002322(A027760(k)) = k.

Original entry on oeis.org

21, 45, 49, 81, 85, 91, 93, 111, 117, 121, 133, 141, 145, 165, 175, 177, 201, 205, 209, 213, 217, 221, 231, 235, 247, 253, 261, 265, 273, 289, 291, 301, 309, 319, 325, 333, 357, 361, 365, 369, 381, 391, 411, 415, 441, 445, 451, 453, 465, 469, 477, 481, 493
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Jul 09 2018

Keywords

Comments

Also, composite numbers n such that LCM( p-1 : prime p|A027642(n-1) ) = n-1. Also, composite numbers n such that LCM( p-1 : p is prime & (p-1)|(n-1) ) = n-1. - Max Alekseyev, Dec 03 2021
Contains all Carmichael numbers except 2628073, 3224065, 23382529, 182356993, 1419339691, ...

Crossrefs

Programs

  • Mathematica
    1 + Select[Range[500], CompositeQ[# + 1] && CarmichaelLambda[ Times @@ Select[1 + Divisors@ #, PrimeQ]] == # &] (* Giovanni Resta, Aug 13 2018 *)
  • PARI
    a027760(n) = denominator(sumdiv(n, d, if(isprime(d+1), 1/(d+1))));
    a002322(n) = lcm(znstar(n)[2]);
    isok(n) = !isprime(n) && (n--) && !frac(a002322(a027760(n))/n); \\ Michel Marcus, Aug 13 2018

Extensions

More terms from Giovanni Resta, Aug 13 2018