A317303
Numbers k such that both Dyck paths of the symmetric representation of sigma(k) have a central peak.
Original entry on oeis.org
2, 7, 8, 9, 16, 17, 18, 19, 20, 29, 30, 31, 32, 33, 34, 35, 46, 47, 48, 49, 50, 51, 52, 53, 54, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 154, 155, 156, 157, 158, 159, 160
Offset: 1
Written as an irregular triangle in which the row lengths are the odd numbers, the sequence begins:
2;
7, 8, 9;
16, 17, 18, 19, 20;
29, 30, 31, 32, 33, 34, 35;
46, 47, 48, 49, 50, 51, 52, 53, 54;
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77;
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104;
121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135;
...
Illustration of initial terms:
-----------------------------------------------------------
k sigma(k) Diagram of the symmetry of sigma
-----------------------------------------------------------
_ _ _ _ _ _ _ _ _
_| | | | | | | | | | | |
2 3 |_ _| | | | | | | | | | |
| | | | | | | | | |
_|_| | | | | | | | |
_| _ _|_| | | | | | |
_ _ _ _| _| | | | | | | |
7 8 |_ _ _ _| |_ _| | | | | | |
8 15 |_ _ _ _ _| _ _ _| | | | | |
9 13 |_ _ _ _ _| | _ _ _|_| | | |
_| | _ _ _|_| |
_| _| | _ _ _ _|
_ _| _| _ _| |
| _ _| _| _|
| | | |
_ _ _ _ _ _ _ _| | _ _| _ _|
16 31 |_ _ _ _ _ _ _ _ _| | _ _|
17 18 |_ _ _ _ _ _ _ _ _| | |
18 39 |_ _ _ _ _ _ _ _ _ _| |
19 20 |_ _ _ _ _ _ _ _ _ _| |
20 42 |_ _ _ _ _ _ _ _ _ _ _|
.
For the first nine terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central peak.
Compare with A317304.
Row sums give the odd-indexed terms of
A006002.
Right border gives the positive terms of
A014107, also the odd-indexed terms of
A000096.
Cf.
A000203,
A005408,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A249351,
A262626.
A317304
Numbers k with the property that both Dyck paths of the symmetric representation of sigma(k) have a central valley.
Original entry on oeis.org
4, 5, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 42, 43, 44, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149
Offset: 1
Written as an irregular triangle in which the row lengths are the positive even numbers, the sequence begins:
4, 5;
11, 12, 13, 14;
22, 23, 24, 25, 26, 27;
37, 38, 39, 40, 41, 42, 43, 44;
56, 57, 58, 59, 60, 61, 62, 63, 64, 65;
79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90;
106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119;
...
Illustration of initial terms:
-------------------------------------------------
k sigma(k) Diagram of the symmetry of sigma
-------------------------------------------------
_ _ _ _ _ _
| | | | | | | |
_| | | | | | | |
_ _| _|_| | | | | |
4 7 |_ _ _| | | | | |
5 6 |_ _ _| | | | | |
_ _|_| | | |
_| _ _|_| |
_| | _ _ _|
| _|_|
_ _ _ _ _ _| _ _|
11 12 |_ _ _ _ _ _| | _|
12 28 |_ _ _ _ _ _ _| |
13 14 |_ _ _ _ _ _ _| |
14 24 |_ _ _ _ _ _ _ _|
.
For the first six terms of the sequence we can see in the above diagram that both Dyck path (the smallest and the largest) of the symmetric representation of sigma(k) have a central valley.
Compare with A317303.
Right border gives the nonzero terms of
A014106.
Cf.
A000203,
A005843,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A249351,
A262626.
A317307
Sum of divisors of powers of 2 and sum of divisors of even perfect numbers.
Original entry on oeis.org
1, 3, 7, 12, 15, 31, 56, 63, 127, 255, 511, 992, 1023, 2047, 4095, 8191, 16256, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67100672, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591, 17179738112, 17179869183
Offset: 1
Illustration of initial terms. a(n) is the area (or the number of cells) of the n-th region of the diagram:
. _ _ _ _ _ _ _ _
. 1 |_| | | | | | | | | | | | | |
. 3 |_ _|_| | | | | | | | | | | |
. _ _| _|_| | | | | | | | | |
. 7 |_ _ _| _|_| | | | | | | |
. _ _ _| _| _ _| | | | | | |
. 12 |_ _ _ _| _| | | | | | |
. _ _ _ _| | | | | | | |
. 15 |_ _ _ _ _| _ _ _| | | | | |
. | _ _ _| | | | |
. _| | | | | |
. _| _| | | | |
. _ _| _| | | | |
. | _ _| | | | |
. | | _ _ _ _ _| | | |
. _ _ _ _ _ _ _ _| | | _ _ _ _ _| | |
. 31 |_ _ _ _ _ _ _ _ _| | | _ _ _ _ _ _| |
. _ _| | | _ _ _ _ _ _|
. _ _| _ _| | |
. | _| _ _| |
. _| _| | _ _|
. | _| _| |
. _ _ _| | _| _|
. | _ _ _| _ _| _|
. | | | _ _|
. | | _ _ _| |
. | | | _ _ _|
. _ _ _ _ _ _ _ _ _ _ _ _ _ _| | | |
. 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
. | |
. | |
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. 63 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
The diagram shows the first eight terms of the sequence. The symmetric representation of sigma of the numbers A317306: 1, 2, 4, 6, 8, 16, 28, 32, ..., has only one part, and apart from the central width, the rest of the widths are 1's.
Odd terms give the nonzeros terms of
A000225.
Cf.
A000203,
A000396,
A196020,
A236104,
A235791,
A237048,
A237591,
A237593,
A237270,
A237271,
A239660,
A239931,
A239932,
A239933,
A239934,
A244050,
A245092,
A262626,
A317306.
-
DivisorSigma[1, #] &@ Union[2^Range[0, Floor@ Log2@ Last@ #], #] &@ Array[2^(# - 1) (2^# - 1) &@ MersennePrimeExponent@ # &, 7] (* Michael De Vlieger, Aug 25 2018, after Robert G. Wilson v at A000396 *)
A368582
a(n) = floor((sigma(n) + 1) / 2).
Original entry on oeis.org
1, 2, 2, 4, 3, 6, 4, 8, 7, 9, 6, 14, 7, 12, 12, 16, 9, 20, 10, 21, 16, 18, 12, 30, 16, 21, 20, 28, 15, 36, 16, 32, 24, 27, 24, 46, 19, 30, 28, 45, 21, 48, 22, 42, 39, 36, 24, 62, 29, 47, 36, 49, 27, 60, 36, 60, 40, 45, 30, 84, 31, 48, 52, 64, 42, 72, 34, 63
Offset: 1
-
using Nemo
A368582(n::Int) = div(divisor_sigma(n, 1) + 1, 2)
println([A368582(n) for n in 1:68])
-
Array[Floor[(DivisorSigma[1, #] + 1)/2] &, 120] (* Michael De Vlieger, Dec 31 2023 *)
-
a(n) = (sigma(n)+1)\2; \\ Michel Marcus, Jan 03 2024
Showing 1-4 of 4 results.
Comments