cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A317904 Decimal expansion of a constant related to the asymptotics of A302598.

Original entry on oeis.org

3, 9, 5, 6, 1, 8, 4, 2, 0, 3, 0, 2, 6, 1, 6, 9, 7, 5, 4, 5, 4, 0, 8, 0, 2, 1, 8, 1, 8, 7, 8, 3, 0, 0, 8, 3, 3, 2, 9, 9, 9, 9, 8, 8, 0, 9, 5, 2, 5, 5, 5, 4, 0, 9, 8, 1, 6, 4, 9, 6, 2, 1, 1, 3, 0, 9, 3, 2, 8, 8, 5, 1, 3, 1, 4, 6, 2, 5, 2, 1, 2, 3, 0, 3, 1, 1, 5, 8, 9, 4, 8, 8, 4, 1, 6, 4, 0, 9, 6, 0, 7, 4, 7, 6, 5
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 10 2018

Keywords

Examples

			3.9561842030261697545408021818783008332999988095...
		

Crossrefs

A317351 G.f. satisfies: A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1).

Original entry on oeis.org

1, 2, 6, 16, 154, 4584, 130464, 3816304, 123180090, 4422532004, 175136909492, 7585703878304, 356923128965592, 18139717839708536, 990827454743868120, 57910782633622271952, 3607453763547725076028, 238660376246383050751764, 16714929289459273370819900, 1235688614706272361317140840, 96170725583233854961162923028
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2018

Keywords

Comments

G.f. A(x) = G(log(1+x)), where G(x) is the e.g.f. of A317356.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 154*x^4 + 4584*x^5 + 130464*x^6 + 3816304*x^7 + 123180090*x^8 + 4422532004*x^9 + 175136909492*x^10 + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A)  +  ((1+x)^2 - A)/(2 - (1+x)*A)^2  +  ((1+x)^3 - A)^2/(2 - (1+x)^2*A)^3  +  ((1+x)^4 - A)^3/(2 - (1+x)^3*A)^4  +  ((1+x)^5 - A)^4/(2 - (1+x)^4*A)^5  +  ((1+x)^6 - A)^5/(2 - (1+x)^5*A)^6 + ...
Also,
A(x) = 1/(2 + A)  +  ((1+x)^2 + A)/(2 + (1+x)*A)^2  +  ((1+x)^3 + A)^2/(2 + (1+x)^2*A)^3  +  ((1+x)^4 + A)^3/(2 + (1+x)^3*A)^4  +  ((1+x)^5 + A)^4/(2 + (1+x)^4*A)^5  +  ((1+x)^6 + A)^5/(2 + (1+x)^5*A)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); A = Vec( sum(m=0,#A, ( (1+x)^(m+1) - Ser(A) )^m  / (2 - (1+x)^m*Ser(A))^(m+1) ) ) ); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n / (2 - (1+x)^n*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( (1+x)^(n+1) + A(x) )^n / (2 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317904 = 3.956184203026... and c = 0.23137523927... - Vaclav Kotesovec, Aug 07 2018

A317355 E.g.f. satisfies: A(x) = Sum_{n>=0} ( exp(n*x) - A(x) )^n / (2 - exp(n*x)*A(x))^(n+1).

Original entry on oeis.org

1, 1, 5, 85, 5261, 549061, 79707245, 15531175045, 3926159465261, 1249497583485061, 488841071584907885, 230674363972514998405, 129251110556658394610861, 84870052450743141454787461, 64574784437643167984687238125, 56377769340759003121860283852165, 55996026841326090728124344073814061
Offset: 0

Views

Author

Paul D. Hanna, Aug 02 2018

Keywords

Comments

E.g.f. A(x) = G(exp(x) - 1), where G(x) is the g.f. of A317350.

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 85*x^3/3! + 5261*x^4/4! + 549061*x^5/5! + 79707245*x^6/6! + 15531175045*x^7/7! + 3926159465261*x^8/8! + 1249497583485061*x^9/9! + ...
such that A = A(x) satisfies
A(x) = 1/(2 - A)  +  (exp(x) - A)/(2 - exp(x)*A)^2  +  (exp(2*x) - A)^2/(2 - exp(2*x)*A)^3  +  (exp(3*x) - A)^3/(2 - exp(3*x)*A)^4  +  (exp(4*x) - A)^4/(2 - exp(4*x)*A)^5  +  (exp(5*x) - A)^5/(2 - exp(5*x)*A)^6 + ...
Also,
A(x) = 1/(2 + A)  +  (exp(x) + A)/(2 + exp(x)*A)^2  +  (exp(2*x) + A)^2/(2 + exp(2*x)*A)^3  +  (exp(3*x) + A)^3/(2 + exp(3*x)*A)^4  +  (exp(4*x) + A)^4/(2 + exp(4*x)*A)^5  +  (exp(5*x) + A)^5/(2 + exp(5*x)*A)^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A = Vec( sum(m=0, #A, ( exp(m*x +x*O(x^#A)) - Ser(A) )^m  / (2 - exp(m*x +x*O(x^#A))*Ser(A))^(m+1) ) ) ); n!*A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

Formula

E.g.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} ( exp(n*x) - A(x) )^n / (2 - exp(n*x)*A(x))^(n+1),
(2) A(x) = Sum_{n>=0} ( exp(n*x) + A(x) )^n / (2 + exp(n*x)*A(x))^(n+1).
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A317904 = 3.9561842030261697545408... and c = 0.16545672527... - Vaclav Kotesovec, Aug 10 2018
Showing 1-3 of 3 results.