cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317357 a(n) is the smallest composite k > n such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).

Original entry on oeis.org

4, 341, 473, 6, 10, 133, 497, 14, 12, 15, 15, 16, 18, 143, 35, 20, 32, 51, 57, 38, 28, 77, 253, 36, 30, 65, 39, 36, 58, 115, 155, 62, 36, 187, 119, 40, 74, 57, 247, 52, 80, 287, 2051, 86, 55, 69, 69, 94, 54, 175, 85, 65, 65, 159, 69, 70, 64, 551, 1711, 72
Offset: 1

Views

Author

Thomas Ordowski, Jul 26 2018

Keywords

Comments

According to the Agoh-Giuga conjecture, a(n) > n+1.
a(n) > A151800(n) for all n < 33.
a(n) <= A271221(n) for n > 1.

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k = n+1}, While[PrimeQ[k] || Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != n, k++]; k]; Array[a, 60] (* Giovanni Resta, Jul 26 2018 *)
  • PARI
    a(n) = forcomposite(k=n+1,, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ Michel Marcus, Jul 26 2018
    
  • Python
    from sympy import isprime
    def g(n,p,q): # compute (-n + sum_{k=1,n} k^p)  mod q
        c = (-n) % q
        for k in range(1,n+1):
            c = (c+pow(k,p,q)) % q
        return c
    def A317357(n):
        k = n+1
        while isprime(k) or g(n,k-1,k):
            k += 1
        return k # Chai Wah Wu, Jul 31 2018

Extensions

More terms from Giovanni Resta, Jul 26 2018