A317358 a(n) is the smallest number k > 1 such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).
2, 3, 5, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 29, 2, 2, 5, 3, 2, 2, 31, 37, 2, 2, 37, 35, 2, 2, 3, 41, 2, 2, 43, 47, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 59, 61, 2, 2, 67, 3, 2, 2, 55, 71, 2, 2, 35, 35, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Seiichi Manyama)
- Wikipedia, Agoh-Giuga conjecture
Programs
-
Mathematica
a[n_] := Block[{k=2}, While[Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != Mod[n, k], k++]; k]; Array[a, 81] (* Giovanni Resta, Jul 29 2018 *)
-
PARI
a(n) = for(k=2,oo, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ Michel Marcus, Jul 26 2018
-
Python
def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q c = (-n) % q for k in range(1,n+1): c = (c+pow(k,p,q)) % q return c def A317358(n): k = 2 while g(n,k-1,k): k += 1 return k # Chai Wah Wu, Jul 30 2018
Extensions
More terms from Michel Marcus, Jul 26 2018
Comments