A121707 Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1371 terms from Robert Israel)
- T. Ordowski, Density of anti-Carmichael numbers, SeqFan Mailing List, Feb 17 2021.
- Don Reble, Comments on A121707
Crossrefs
Programs
-
Maple
filter:= n -> add(k &^ n mod n^3, k=1..n-1) mod n^3 = 0: select(filter, [$2..1000]); # Robert Israel, Oct 08 2015
-
Mathematica
fQ[n_] := Mod[Sum[PowerMod[k, n, n^3], {k, n - 1}], n^3] == 0; Select[ Range[2, 611], fQ] (* Robert G. Wilson v, Apr 04 2011 and slightly modified Aug 02 2018 *)
-
PARI
is(n)=my(n3=n^3);sum(k=1,n-1,Mod(k,n3)^n)==0 \\ Charles R Greathouse IV, May 09 2013
-
PARI
for(n=2, 1000, if(sum(k=1, n-1, k^n) % n^3 == 0, print1(n", "))) \\ Altug Alkan, Oct 15 2015
-
Sage
# after Andrzej Schinzel def isA121707(n): if n == 1 or is_even(n): return False return n.divides(sum(k^(n-1) for k in (1..n-1))) [n for n in (1..611) if isA121707(n)] # Peter Luschny, Jul 18 2019
Extensions
Sequence corrected by Robert G. Wilson v, Apr 04 2011
A317058 a(n) is the smallest composite k such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).
4, 341, 473, 4, 4, 133, 497, 4, 4, 15, 9, 4, 4, 143, 35, 4, 4, 51, 57, 4, 4, 77, 253, 4, 4, 65, 9, 4, 4, 115, 155, 4, 4, 187, 35, 4, 4, 9, 247, 4, 4, 287, 2051, 4, 4, 15, 33, 4, 4, 35, 85, 4, 4, 9, 9, 4, 4, 551, 1711, 4, 4, 713, 21, 4, 4, 55, 77, 4, 4, 35, 35, 4
Offset: 1
Keywords
Comments
According to the Agoh-Giuga conjecture, a(n) <> n+1.
a(n) = 4 if and only if n == {0, 1} (mod 4).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..9661 (n = 1..500 from Seiichi Manyama)
- Wikipedia, Agoh-Giuga conjecture
Programs
-
Mathematica
a[n_] := Block[{k = 4}, While[PrimeQ[k] || Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != Mod[n, k], k++]; k]; Array[a, 72] (* Giovanni Resta, Jul 26 2018 *)
-
PARI
a(n) = forcomposite(k=1,, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ Michel Marcus, Jul 26 2018
-
Python
from sympy import isprime def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q c = (-n) % q for k in range(1,n+1): c = (c+pow(k,p,q)) % q return c def A317058(n): k = 2 while isprime(k) or g(n,k-1,k): k += 1 return k # Chai Wah Wu, Jul 30 2018
Extensions
More terms from Giovanni Resta, Jul 26 2018
A317357 a(n) is the smallest composite k > n such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).
4, 341, 473, 6, 10, 133, 497, 14, 12, 15, 15, 16, 18, 143, 35, 20, 32, 51, 57, 38, 28, 77, 253, 36, 30, 65, 39, 36, 58, 115, 155, 62, 36, 187, 119, 40, 74, 57, 247, 52, 80, 287, 2051, 86, 55, 69, 69, 94, 54, 175, 85, 65, 65, 159, 69, 70, 64, 551, 1711, 72
Offset: 1
Keywords
Comments
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..9661
- Wikipedia, Agoh-Giuga conjecture
Programs
-
Mathematica
a[n_] := Block[{k = n+1}, While[PrimeQ[k] || Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != n, k++]; k]; Array[a, 60] (* Giovanni Resta, Jul 26 2018 *)
-
PARI
a(n) = forcomposite(k=n+1,, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ Michel Marcus, Jul 26 2018
-
Python
from sympy import isprime def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q c = (-n) % q for k in range(1,n+1): c = (c+pow(k,p,q)) % q return c def A317357(n): k = n+1 while isprime(k) or g(n,k-1,k): k += 1 return k # Chai Wah Wu, Jul 31 2018
Extensions
More terms from Giovanni Resta, Jul 26 2018
A133907 Least prime number p such that binomial(n+p, p) mod p = 1.
2, 3, 5, 2, 2, 7, 11, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 29, 2, 2, 5, 3, 2, 2, 31, 37, 2, 2, 37, 37, 2, 2, 3, 41, 2, 2, 43, 47, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 59, 61, 2, 2, 67, 3, 2, 2, 67, 71, 2, 2, 71, 73, 2, 2, 3, 5, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 89, 2, 2, 3, 3, 2, 2, 97
Offset: 1
Keywords
Comments
Also the least prime number p such that p divides floor(n/p) or p > n.
a(n) = 2 if and only if n is in A042948. - Robert Israel, May 11 2017
Conjecture: a(n) is the smallest prime p such that Sum_{k=1..n} k^(p-1) == n (mod p). Thus a(n) >= A317358(n). - Thomas Ordowski, Jul 29 2018
Examples
a(2)=3, since binomial(2+3,3) mod 3 = 10 mod 3 = 1 and 3 is the minimal prime number with this property. a(7)=11 because of binomial(7+11, 11) = 31824 = 2893*11 + 1, but binomial(7+k, k) mod k <> 1 for all primes < 11.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(n) local m; m:= 2: while floor(n/m) mod m <> 0 do m:= nextprime(m) od: m end proc: map(f, [$1..100]); # Robert Israel, May 11 2017
-
Mathematica
a[n_] := Module[{p}, For[p = 2, True, p = NextPrime[p], If[Mod[Binomial[n+p, p], p] == 1, Return[p]]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 05 2023 *)
-
PARI
a(n) = my(p=2); while (binomial(n+p, p) % p != 1, p = nextprime(p+1)); p; \\ Michel Marcus, Dec 17 2022
-
Python
from sympy import nextprime, ff def A133907(n): p, m = 2, (n+2)*(n+1)>>1 while m%p != 1: q = nextprime(p) m = m*ff(n+q,q-p)//ff(q,q-p) p = q return p # Chai Wah Wu, Feb 22 2023
Comments