cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A306097 Terms of A121707 not in A267999.

Original entry on oeis.org

697, 1241, 1247, 1271, 1513, 2057, 2201, 2329, 2501, 2873, 3053, 3131, 3683, 3689, 3961, 4015, 4061, 4141, 4777, 4859, 4991, 5321, 5921, 5963, 6137, 6851, 6953, 7421, 7769, 7781, 7957, 8471, 8711, 8857, 9017, 9211, 9271, 9401, 9641, 9673, 10217, 10277, 10489, 10795, 11033, 11501
Offset: 1

Views

Author

M. F. Hasler, following remarks from Tomasz Ordowski, Oct 03 2018

Keywords

Comments

Numbers n such that gcd(n, 2^n-2) > 1 and gcd(n, b^n-b) = 1 for some b > 2, b < n.
Or: Numbers n such that gcd(n, 2^n-2) > 1 and for every prime factor p of n, p-1 does not divide n-1.
2057 is the first term not in A008367, nor in A287391. - M. F. Hasler, Oct 04 2018

Examples

			The smallest element of this sequence is a(1) = 697 = 17*41.
		

Crossrefs

Programs

  • PARI
    is(n,p)={for(i=1, #p=factor(n)[,1], (n-1)%(p[i]-1)||return); gcd(n, lift(Mod(2,n)^n-2))>1}

Formula

A321487 Numbers in A121707 (n^3 > 1 divides Sum_{k=1..n-1} k^n) which are not semiprimes.

Original entry on oeis.org

275, 455, 475, 539, 575, 715, 775, 875, 935, 1075, 1127, 1175, 1235, 1295, 1375, 1421, 1463, 1475, 1495, 1547, 1595, 1615, 1675, 1715, 1775, 1859, 1955, 1975, 2009, 2015, 2035, 2057, 2075, 2093, 2135, 2255, 2261, 2299, 2303, 2375, 2387, 2555, 2575, 2597, 2635, 2639, 2675, 2717, 2783
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2018

Keywords

Comments

Most terms of A121707 and its (conjectured) subsequence A267999 are semiprimes. This sequence lists the exceptions.
At first, it looked as if most terms were multiples of 5. The first exceptions are a({4, 11, 16}) = {539, 1127, 1421}. However, after the first 30 terms, almost every other term is not divisible by 5.
The first terms not in A267999 are {2057, 2873, 3689, 4015, 4991, 6137, ...}, cf. A321488.

Crossrefs

A321488 Nonsemiprimes in A306097 = A121707 \ A267999.

Original entry on oeis.org

2057, 2873, 3689, 4015, 4991, 6137, 6851, 9401, 10795, 11033, 11501, 11837, 11849, 12341, 12593, 13481, 13795, 14297, 15113, 15695, 17155, 17633, 18011, 18377, 18469, 18941, 19097, 20009, 21463, 21641, 22661, 22919, 23273, 24089, 24521, 25721, 25993, 26381
Offset: 1

Views

Author

M. F. Hasler, Nov 11 2018

Keywords

Comments

Equivalently, terms of A321487 not in A267999, or intersection of A321487 and A306097.

Crossrefs

A002997 Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721
Offset: 1

Views

Author

Keywords

Comments

V. Šimerka found the first 7 terms of this sequence 25 years before Carmichael (see the link and also the remark of K. Conrad). - Peter Luschny, Apr 01 2019
k is composite and squarefree and for p prime, p|k => p-1|k-1.
An odd composite number k is a pseudoprime to base a iff a^(k-1) == 1 (mod k). A Carmichael number is an odd composite number k which is a pseudoprime to base a for every number a prime to k.
A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k. (Korselt, 1899)
Ghatage and Scott prove using Fermat's little theorem that (a+b)^k == a^k + b^k (mod k) (the freshman's dream) exactly when k is a prime (A000040) or a Carmichael number. - Jonathan Vos Post, Aug 31 2005
Alford et al. have constructed a Carmichael number with 10333229505 prime factors, and have also constructed Carmichael numbers with m prime factors for every m between 3 and 19565220. - Jonathan Vos Post, Apr 01 2012
Thomas Wright proved that for any numbers b and M in N with gcd(b,M) = 1, there are infinitely many Carmichael numbers k such that k == b (mod M). - Jonathan Vos Post, Dec 27 2012
Composite numbers k relatively prime to 1^(k-1) + 2^(k-1) + ... + (k-1)^(k-1). - Thomas Ordowski, Oct 09 2013
Composite numbers k such that A063994(k) = A000010(k). - Thomas Ordowski, Dec 17 2013
Odd composite numbers k such that k divides A002445((k-1)/2). - Robert Israel, Oct 02 2015
If k is a Carmichael number and gcd(b-1,k)=1, then (b^k-1)/(b-1) is a pseudoprime to base b by Steuerwald's theorem; see the reference in A005935. - Thomas Ordowski, Apr 17 2016
Composite numbers k such that p^k == p (mod k) for every prime p <= A285512(k). - Max Alekseyev and Thomas Ordowski, Apr 20 2017
If a composite m < A285549(n) and p^m == p (mod m) for every prime p <= prime(n), then m is a Carmichael number. - Thomas Ordowski, Apr 23 2017
The sequence of all Carmichael numbers can be defined as follows: a(1) = 561, a(n+1) = smallest composite k > a(n) such that p^k == p (mod k) for every prime p <= n+2. - Thomas Ordowski, Apr 24 2017
An integer m > 1 is a Carmichael number if and only if m is squarefree and each of its prime divisors p satisfies both s_p(m) >= p and s_p(m) == 1 (mod p-1), where s_p(m) is the sum of the base-p digits of m. Then m is odd and has at least three prime factors. For each prime factor p, the sharp bound p <= a*sqrt(m) holds with a = sqrt(17/33) = 0.7177.... See Kellner and Sondow 2019. - Bernd C. Kellner and Jonathan Sondow, Mar 03 2019
Carmichael numbers are special polygonal numbers A324973. The rank of the n-th Carmichael number is A324975(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
An odd composite number m is a Carmichael number iff m divides denominator(Bernoulli(m-1)). The quotient is A324977. See Pomerance, Selfridge, & Wagstaff, p. 1006, and Kellner & Sondow, section on Bernoulli numbers. - Jonathan Sondow, Mar 28 2019
This is setwise difference A324050 \ A008578. Many of the same identities apply also to A324050. - Antti Karttunen, Apr 22 2019
If k is a Carmichael number, then A309132(k) = A326690(k). The proof generalizes that of Theorem in A309132. - Jonathan Sondow, Jul 19 2019
Composite numbers k such that A111076(k)^(k-1) == 1 (mod k). Proof: the multiplicative order of A111076(k) mod k is equal to lambda(k), where lambda(k) = A002322(k), so lambda(k) divides k-1, qed. - Thomas Ordowski, Nov 14 2019
For all positive integers m, m^k - m is divisible by k, for all k > 1, iff k is either a Carmichael number or a prime, as is used in the proof by induction for Fermat's Little Theorem. Also related are A182816 and A121707. - Richard R. Forberg, Jul 18 2020
From Amiram Eldar, Dec 04 2020, Apr 21 2024: (Start)
Ore (1948) called these numbers "Numbers with the Fermat property", or, for short, "F numbers".
Also called "absolute pseudoprimes". According to Erdős (1949) this term was coined by D. H. Lehmer.
Named by Beeger (1950) after the American mathematician Robert Daniel Carmichael (1879 - 1967). (End)
For ending digit 1,3,5,7,9 through the first 10000 terms, we see 80.3, 4.1, 7.4, 3.8 and 4.3% apportionment respectively. Why the bias towards ending digit "1"? - Bill McEachen, Jul 16 2021
It seems that for any m > 1, the remainders of Carmichael numbers modulo m are biased towards 1. The number of terms congruent to 1 modulo 4, 6, 8, ..., 24 among the first 10000 terms: 9827, 9854, 8652, 8034, 9682, 5685, 6798, 7820, 7880, 3378 and 8518. - Jianing Song, Nov 08 2021
Alford, Granville and Pomerance conjectured in their 1994 paper that a statement analogous to Bertrand's Postulate could be applied to Carmichael numbers. This has now been proved by Daniel Larsen, see link below. - David James Sycamore, Jan 17 2023

References

  • N. G. W. H. Beeger, On composite numbers n for which a^n == 1 (mod n) for every a prime to n, Scripta Mathematica, Vol. 16 (1950), pp. 133-135.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publications, Inc. New York, 1966, Table 18, Page 44.
  • David M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 142.
  • CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 87.
  • Richard K. Guy, Unsolved Problems in Number Theory, A13.
  • Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.
  • Paul Poulet, Tables des nombres composés vérifiant le théorème du Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), 8 (1938), 42-45.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22, 100-103.
  • Wacław Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 145-146.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 561 at p. 157.

Crossrefs

Programs

  • Haskell
    a002997 n = a002997_list !! (n-1)
    a002997_list = [x | x <- a024556_list,
    all (== 0) $ map ((mod (x - 1)) . (subtract 1)) $ a027748_row x]
    -- Reinhard Zumkeller, Apr 12 2012
    
  • Magma
    [n: n in [3..53*10^4 by 2] | not IsPrime(n) and n mod CarmichaelLambda(n) eq 1]; // Bruno Berselli, Apr 23 2012
    
  • Maple
    filter:= proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1) mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(2*k+1,k=1..10^6)]); # Robert Israel, Dec 29 2014
    isA002997 := n -> 0 = modp(n-1, numtheory:-lambda(n)) and not isprime(n) and n <> 1:
    select(isA002997, [$1..10000]); # Peter Luschny, Jul 21 2019
  • Mathematica
    Cases[Range[1,100000,2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]] (* Artur Jasinski, Apr 05 2008; minor edit from Zak Seidov, Feb 16 2011 *)
    Select[Range[1,600001,2],CompositeQ[#]&&Mod[#,CarmichaelLambda[#]]==1&] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    is_A002997(n, F=factor(n)~)={ #F>2 && !foreach(F,f,(n%(f[1]-1)==1 && f[2]==1) || return)} \\ No need to check parity: if efficiency is needed, scan only odd numbers. - M. F. Hasler, Aug 24 2012, edited Mar 24 2022
    
  • Python
    from itertools import islice
    from sympy import nextprime, factorint
    def A002997_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for n in range(p+2,q,2):
                f = factorint(n)
                if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
                    yield n
            p, q = q, nextprime(q)
    A002997_list = list(islice(A002997_gen(),20)) # Chai Wah Wu, May 11 2022
  • Sage
    def isCarmichael(n):
        if n == 1 or is_even(n) or is_prime(n):
            return False
        factors = factor(n)
        for f in factors:
            if f[1] > 1: return False
            if (n - 1) % (f[0] - 1) != 0:
                return False
        return True
    print([n for n in (1..20000) if isCarmichael(n)]) # Peter Luschny, Apr 02 2019
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.004706, 27.8724) (Bayless and Kinlaw, 2017). The upper bound was reduced to 0.0058 by Kinlaw (2023). - Amiram Eldar, Oct 26 2020, Feb 24 2024

Extensions

Links for lists of Carmichael numbers updated by Jan Kristian Haugland, Mar 25 2009 and Danny Rorabaugh, May 05 2017

A267999 Numbers n > 1 such that gcd(n, 2^n - 2) = 1.

Original entry on oeis.org

35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611, 623
Offset: 1

Views

Author

Thomas Ordowski and Robert Israel, Jan 24 2016

Keywords

Comments

Odd numbers n > 1 such that gcd(n, 2^(n-1)-1) = 1.
Conjecture: this is a subsequence of A121707. Tested for all terms <= 10^5.
For n > 1, if gcd(n, 2^n-2) = 1, then n is an "anti-Carmichael number" defined: p-1 does not divide n-1 for every prime p dividing n. Generally: for k > 1, gcd(k, b^k-b) = 1 for some integer b if and only if k is an "anti-Carmichael number". - Thomas Ordowski, Aug 14 2018

Crossrefs

Cf. A121707.
Cf. A306097 for terms of A121707 not in this sequence.

Programs

  • Magma
    [n: n in [2..800] | Gcd(n, 2^n-2) eq 1]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    select(n -> igcd(n, 2&^n-2 mod n)=1, [seq(i,i=3..10000, 2)]);
  • Mathematica
    Select[Range[2, 768], GCD[#, 2^# - 2] == 1 &] (* or *)
    Select[Range[2, 768], OddQ@ # && GCD[#, 2^(# - 1) - 1] == 1 &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    lista(nn) = for(n=2, nn, if(gcd(n, 2^n - 2) == 1, print1(n, ", "))); \\ Altug Alkan, Jan 24 2016
    

Formula

a(n) = A121707(n) for n < 62. A121707(62) = 697 = A306097(1) is the first term of A121707 not in this sequence. - M. F. Hasler, Nov 09 2018

A121706 a(n) = Sum_{k=1..n-1} k^n.

Original entry on oeis.org

0, 1, 9, 98, 1300, 20515, 376761, 7907396, 186884496, 4914341925, 142364319625, 4505856912854, 154718778284148, 5729082486784839, 227584583172284625, 9654782997596059912, 435659030617933827136, 20836030169620907691465
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006

Keywords

Comments

n^3 divides a(n) for n in A121707.
It appears that p^(3k-1) divides a(p^k) for all integer k > 1 and prime p > 2:
for prime p > 2, p^2 divides a(p), p^5 divides a(p^2) and p^8 divides a(p^3).
Additionally, p^3 divides a(3p) for prime p > 2.
For prime p > 3, p divides a(p+1) and p^3 divides a(2p+1);
for prime p > 5, p divides a(3p+1) and p^3 divides a(4p+1);
for prime p > 7, p divides a(5p+1) and p^3 divides a(6p+1):
It appears that p divides a((2k+1)p+1) for integer k >= 0 and prime p > 2k+3, and p^3 divides a(2kp+1) for integer k > 0 and prime p > 2k+2.
p divides a((p+1)/2) for primes in A002145: primes of the form 4n+3, n >= 1.
p^2 divides a((p+1)/2) for primes in A007522: primes of the form 8n+7, n >= 0.
n*(2*n+1) divides a(2*n+1) for n >= 1. - Franz Vrabec, Dec 20 2020

Crossrefs

Programs

Formula

a(n) = Sum(k^n, k=1..n) - n^n = A031971(n) - A000312(n) for n > 1.
a(n) = zeta(-n) - zeta(-n, n).

Extensions

Edited by M. F. Hasler, Jul 22 2019

A191677 Numbers n such that 1^(n-1)+2^(n-1)+...+n^(n-1) == 0 (mod n).

Original entry on oeis.org

1, 4, 8, 12, 16, 20, 24, 28, 32, 35, 36, 40, 44, 48, 52, 55, 56, 60, 64, 68, 72, 76, 77, 80, 84, 88, 92, 95, 96, 100, 104, 108, 112, 115, 116, 119, 120, 124, 128, 132, 136, 140, 143, 144, 148, 152, 155, 156, 160, 161, 164, 168, 172, 176, 180, 184, 187, 188, 192, 196, 200, 203, 204
Offset: 1

Views

Author

Keywords

Comments

Fermat's little theorem shows that this sequence contains no primes. Related to Giuga's conjecture that the sum is -1 iff n is prime. - Charles R Greathouse IV, Jun 10 2011
Is this is the disjoint union of all multiples of 4 and {1} and A121707 (n^3 divides Sum_{kM. F. Hasler, Jul 22 2019

Crossrefs

Cf. A121707 (n^3 divides Sum_{k

Programs

  • Mathematica
    is191677[n_]:=Mod[Sum[PowerMod[k, n - 1, n], {k, 1, n - 1}], n] == 0;
    Select[Range[300], is191677]
  • PARI
    select( is_A191677(n)=!sum(k=1,n-1,Mod(k,n)^(n-1)), [1..200]) \\ M. F. Hasler, Jul 22 2019

A309132 a(n) is the denominator of F(n) = A027641(n-1)/n + A027642(n-1)/n^2.

Original entry on oeis.org

1, 1, 1, 16, 1, 36, 1, 64, 27, 100, 1, 144, 1, 196, 75, 256, 1, 324, 1, 400, 49, 484, 1, 576, 125, 676, 243, 784, 1, 900, 1, 1024, 363, 1156, 1225, 1296, 1, 1444, 169, 1600, 1, 1764, 1, 1936, 135, 2116, 1, 2304, 343, 2500, 867, 2704, 1, 2916, 3025, 3136, 361, 3364, 1, 3600, 1, 3844, 1323, 4096, 845, 4356, 1
Offset: 1

Author

Thomas Ordowski, Jul 14 2019

Keywords

Comments

It seems that the numerator of F(n) is the numerator of (B(n-1) + 1/n), where B(k) is the k-th Bernoulli number; if so, for n > 2, the numerator of F(n) is A174341(n-1). How to prove it?
Conjecture: for n > 1, a(n) = 1 if and only if n is prime.
Is this conjecture equivalent to the Agoh-Giuga conjecture?
Theorem 1. If p is prime, then a(p) = 1. Proof. a(2) = 1, so let p be an odd prime. By the von Staudt-Clausen theorem, if k is even, then B(k) = A(k) - Sum_{prime q, q-1 | k} 1/q, where A(k) is an integer and the sum is over all primes q such that q-1 divides k. Thus B(k) = N(k)/D(k) with D(k) = Product_{prime q, q-1 | k} q. Now let k = p-1. Then N(p-1)/D(p-1) = B(p-1) = A(p-1) - 1/p - Sum_{prime q < p, q-1 | p-1} 1/q (*). Add 1/p to both sides of (*) and multiply by p*D(p-1) to get p*N(p-1) + D(p-1) = p*D(p-1)*(A(p-1) - Sum_{prime q < p, q-1 | p-1} 1/q) (**). Now p | D(p-1), so p^2 | p*D(p-1) in (**). The denominators on the right side of (**) are all of the form q < p. Therefore, p^2 divides both sides of (**). Hence F(p) = N(p-1)/p + D(p-1)/p^2 is an integer, so a(p) = 1. - Jonathan Sondow, Jul 14 2019
Conjecture: composite numbers n such that a(n) is squarefree are only the Carmichael numbers A002997. Cf. A309235. - Thomas Ordowski, Jul 15 2019
Conjecture checked up to n = 101101. - Amiram Eldar, Jul 16 2019
Theorem 2. If n is a prime or a Carmichael number, then a(n) = A326690(n) = denominator of (Sum_{prime p | n} 1/p - 1/n). The proof is a generalization of that of Theorem 1. (Note that Theorem 2 implies Theorem 1, since if n is prime, then (Sum_{prime p | n} 1/p - 1/n) = 1/n - 1/n = 0/1, so a(p) = A326690(n) = 1.) For n a prime or a Carmichael number, an application of Theorem 2 is computing a(n) without calculating Bernoulli(n-1) which may be huge; see A309268 and A326690. - Jonathan Sondow, Jul 19 2019
The values of F(n) when n is prime are A327033. - Jonathan Sondow, Aug 16 2019

Examples

			F(n) = 2/1, 0/1, 1/1, 1/16, 1/1, 1/36, 1/1, 1/64, 7/27, 1/100, 1/1, 1/144, -37/1, 1/196, 37/75, 1/256, -211/1, 1/324, 2311/1, 1/400, -407389/49, ...
		

Programs

  • Magma
    [Denominator(Numerator(Bernoulli(n-1))/n + Denominator(Bernoulli(n-1))/n^2): n in [1..70]]; // Vincenzo Librandi, Jul 14 2019
  • Mathematica
    Table[Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[ BernoulliB[ n - 1]] / n^2], {n, 70}] (* Vincenzo Librandi, Jul 14 2019 *)
  • PARI
    a(n) = denominator(numerator(bernfrac(n-1))/n + denominator(bernfrac(n-1))/n^2); \\ Michel Marcus, Jul 14 2019
    

Formula

a(p) = 1 for prime p.
a(2k) = (2k)^2 for k > 1.
Conjecture: for k > 0, a(2k+1) = (2k+1)^2 iff 2k+1 is in A121707.
Denominator(F(p)/p) = 1 for the primes p = 2 and p = 1277 but for no other prime p < 1.5 * 10^4. Does denominator(F(p)/p) = 1 for any prime p > 1.5 * 10^4? - Jonathan Sondow, Jul 14 2019
Similarly, Sum_{k=1..p-1} k^(p-1) == -1 (mod p^2) for the prime p = 1277. - Thomas Ordowski, Jul 15 2019
a(n) = denominator(Sum_{prime p | n} 1/p - 1/n) if n is a prime or a Carmichael number. - Jonathan Sondow, Jul 19 2019

A326478 a(n) = n*denominator(n*Bernoulli(n-1))/denominator(Bernoulli(n-1)).

Original entry on oeis.org

1, 1, 1, 4, 1, 6, 1, 8, 3, 10, 1, 12, 1, 14, 5, 16, 1, 18, 1, 20, 7, 22, 1, 24, 5, 26, 9, 28, 1, 30, 1, 32, 11, 34, 35, 36, 1, 38, 13, 40, 1, 42, 1, 44, 3, 46, 1, 48, 7, 50, 17, 52, 1, 54, 55, 56, 19, 58, 1, 60, 1, 62, 21, 64, 13, 66, 1, 68, 23, 70, 1, 72, 1
Offset: 1

Author

Peter Luschny, Jul 16 2019

Keywords

Comments

Empirical: a(2*n) = [x^n] x*(2/(x - 1)^2 - 1) for n >= 1, implying the conjecture that a(2*n) = A103517(n+1) and/or A272651(n).
Conjectural, the odd fixed points > 1 of this sequence are A121707; in other words, for n > 1, denominator(n*Bernoulli(n-1)) = denominator(Bernoulli(n-1)) <=> n | Sum_{k=1..n-1} k^(n-1). (See the conjectures of Thomas Ordowski in A121707.)

Crossrefs

Programs

  • Maple
    A326478 := n -> n*denom(n*bernoulli(n-1))/denom(bernoulli(n-1)):
    db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)):
    a := n -> n/igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..73);
  • Mathematica
    a[n_] := Module[{b =  BernoulliB[n - 1]}, n * Denominator[n * b] / Denominator[b]]; Array[a, 100] (* Amiram Eldar, Apr 26 2024 *)
  • PARI
    a(n) = n*denominator(n*bernfrac(n-1))/denominator(bernfrac(n-1)); \\ Michel Marcus, Jul 17 2019

Formula

a(prime(n)) = 1.
a(n) = n/gcd(n*N(n-1), D(n-1)), with N(k)/D(k) = B(k) the k-th Bernoulli number.

A108574 Range of A000790 (primary pretenders).

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 38, 39, 46, 49, 51, 57, 58, 62, 65, 69, 74, 82, 85, 86, 87, 91, 93, 94, 106, 111, 118, 121, 122, 123, 129, 133, 134, 141, 142, 145, 146, 158, 159, 166, 169, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 217, 218, 219, 226, 237, 249, 254, 259, 262, 265, 267, 274, 278, 289, 291, 298, 301, 302, 303, 305, 309, 314, 321, 326, 327, 334, 339, 341, 346, 358, 361, 362, 365, 381, 382, 386, 393, 394, 398, 411, 417, 422, 427, 445, 446, 447, 451, 453, 454, 458, 466, 469, 471, 478, 481, 482, 485, 489, 501, 502, 505, 511, 514, 519, 526, 529, 537, 538, 542, 543, 545, 553, 554, 561
Offset: 1

Author

David W. Wilson, Jun 10 2005

Keywords

Comments

All terms except for the last term, 561, are semiprimes (A001358). Semiprimes up to 559 that are not here: 35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 473, 493, 497, 515, 517, 527, 533, 535, 551, 559. - Zak Seidov, Jan 08 2015
The LCM of all terms is 23# * 277# (where # denotes the primorial function A034386), the period of A000790, and therefore also of the related sequence b(n) = gcd(A000790(n), n). - M. F. Hasler, Feb 16 2018
Range of A295997. - Thomas Ordowski, Feb 27 2018
These numbers k < 561 are semiprimes k = pq such that p-1 | q-1, where primes p <= q. Equivalent condition is p-1 | k-1. - Thomas Ordowski, Aug 18 2018
This shows that all even semiprimes < 561 are in this sequence. The odd semiprimes not in this sequence are the semiprimes (equivalently: all terms but 275, 455, 475, 539) less than 561 in A267999 (which equals A121707 up to 695). - M. F. Hasler, Nov 09 2018

Crossrefs

Programs

  • Mathematica
    pp[n_] := For[c = 4, True, c = If[PrimeQ[c+1], c+2, c+1], If[PowerMod[n, c, c] == Mod[n, c], Return[c]]];seq[n_] := seq[n] = Table[pp[k], {k, 0, 2^n}] // Union; seq[10]; seq[n = 11]; While[ Print["n = ", n, " more terms: ", Complement[seq[n], seq[n-1]]]; seq[n] != seq[n-1], n++]; A108574 = seq[n] (* Jean-François Alcover, Oct 18 2013 *)
  • PARI
    my(A=List(561)); forprime(q=2,561\2, forprime(p=2,min(q,561\q), (q-1)%(p-1)|| listput(A, p*q))); A108574=Set(A) \\ M. F. Hasler, Nov 09 2018
Showing 1-10 of 25 results. Next