A121707 Numbers n > 1 such that n^3 divides Sum_{k=1..n-1} k^n = A121706(n).
35, 55, 77, 95, 115, 119, 143, 155, 161, 187, 203, 209, 215, 221, 235, 247, 253, 275, 287, 295, 299, 319, 323, 329, 335, 355, 371, 377, 391, 395, 403, 407, 413, 415, 437, 455, 473, 475, 493, 497, 515, 517, 527, 533, 535, 539, 551, 559, 575, 581, 583, 589, 611
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 1371 terms from Robert Israel)
- T. Ordowski, Density of anti-Carmichael numbers, SeqFan Mailing List, Feb 17 2021.
- Don Reble, Comments on A121707
Crossrefs
Programs
-
Maple
filter:= n -> add(k &^ n mod n^3, k=1..n-1) mod n^3 = 0: select(filter, [$2..1000]); # Robert Israel, Oct 08 2015
-
Mathematica
fQ[n_] := Mod[Sum[PowerMod[k, n, n^3], {k, n - 1}], n^3] == 0; Select[ Range[2, 611], fQ] (* Robert G. Wilson v, Apr 04 2011 and slightly modified Aug 02 2018 *)
-
PARI
is(n)=my(n3=n^3);sum(k=1,n-1,Mod(k,n3)^n)==0 \\ Charles R Greathouse IV, May 09 2013
-
PARI
for(n=2, 1000, if(sum(k=1, n-1, k^n) % n^3 == 0, print1(n", "))) \\ Altug Alkan, Oct 15 2015
-
Sage
# after Andrzej Schinzel def isA121707(n): if n == 1 or is_even(n): return False return n.divides(sum(k^(n-1) for k in (1..n-1))) [n for n in (1..611) if isA121707(n)] # Peter Luschny, Jul 18 2019
Extensions
Sequence corrected by Robert G. Wilson v, Apr 04 2011
A228919 Numbers n such that 1^(n+1) + 2^(n+1) + ... + n^(n+1) == 0 (mod n).
1, 4, 5, 7, 8, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 47, 48, 49, 52, 53, 56, 59, 60, 61, 64, 65, 67, 68, 71, 72, 73, 76, 79, 80, 83, 84, 85, 88, 89, 91, 92, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 116
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Mod[Sum[PowerMod[i, n + 1, n], {i, 1, n}], n]; Select[Range[1000], f[#] == 0 &]
-
PARI
is(n)=my(m=n+1);sum(k=1,n,Mod(k,n)^m)==0 \\ Charles R Greathouse IV, Nov 20 2013
A321487 Numbers in A121707 (n^3 > 1 divides Sum_{k=1..n-1} k^n) which are not semiprimes.
275, 455, 475, 539, 575, 715, 775, 875, 935, 1075, 1127, 1175, 1235, 1295, 1375, 1421, 1463, 1475, 1495, 1547, 1595, 1615, 1675, 1715, 1775, 1859, 1955, 1975, 2009, 2015, 2035, 2057, 2075, 2093, 2135, 2255, 2261, 2299, 2303, 2375, 2387, 2555, 2575, 2597, 2635, 2639, 2675, 2717, 2783
Offset: 1
Keywords
Comments
Most terms of A121707 and its (conjectured) subsequence A267999 are semiprimes. This sequence lists the exceptions.
At first, it looked as if most terms were multiples of 5. The first exceptions are a({4, 11, 16}) = {539, 1127, 1421}. However, after the first 30 terms, almost every other term is not divisible by 5.
Links
- M. F. Hasler, Table of n, a(n) for n = 1..2500
A342395 a(n) = Sum_{k=1..n} k^(n/gcd(k,n)).
1, 3, 12, 90, 1305, 15713, 376768, 6163324, 176787369, 3769360335, 142364319636, 3152514811878, 154718778284161, 4340009168261557, 210971169749009040, 7281661102087491416, 435659030617933827153, 14181101408651996188995
Offset: 1
Programs
-
Mathematica
a[n_] := Sum[k^(n/GCD[k, n]), {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Mar 10 2021 *)
-
PARI
a(n) = sum(k=1, n, k^(n/gcd(k, n)));
Formula
If p is prime, a(p) = A121706(p) + p.
A356100 a(n) = Sum_{k=1..n} (k - 1)^n * floor(n/k).
0, 1, 9, 99, 1301, 20581, 376891, 7914216, 186905206, 4915451602, 142368695176, 4506118905870, 154720069309364, 5729167232515112, 227585086051159866, 9654819212943764500, 435659280972794395356, 20836049921760968809231, 1052864549462731148832219
Offset: 1
Keywords
Programs
-
Mathematica
Table[Sum[(k-1)^n Floor[n/k],{k,n}],{n,20}] (* Harvey P. Dale, Dec 14 2024 *)
-
PARI
a(n) = sum(k=1, n, (k-1)^n*(n\k));
-
PARI
a(n) = sum(k=1, n, sigma(k, n)-(n\k)^n);
-
PARI
a(n) = sum(k=1, n, sumdiv(k, d, (d-1)^n));
-
Python
def A356100(n): return sum((k-1)**n*(n//k) for k in range(2,n+1)) # Chai Wah Wu, Jul 26 2022
A228926 Sum(m^(n+1), m=1...n-1) modulo n.
0, 1, 2, 0, 0, 3, 0, 0, 6, 5, 0, 0, 0, 7, 7, 0, 0, 9, 0, 0, 14, 11, 0, 0, 0, 13, 18, 0, 0, 15, 0, 0, 22, 17, 23, 0, 0, 19, 26, 0, 0, 21, 0, 0, 30, 23, 0, 0, 0, 25, 34, 0, 0, 27, 44, 0, 38, 29, 0, 0, 0, 31, 42, 0, 0, 33, 0, 0, 46, 35, 0, 0, 0, 37, 35, 0, 66
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
f[n_] := Mod[Sum[PowerMod[i,n+1,n], {i, 1, n}], n]; Table[f[n], {n, 100}]
-
PARI
a(n)=lift(sum(m=1,n-1,Mod(m,n)^(n+1))) \\ Charles R Greathouse IV, Dec 27 2013
A340806 a(n) = Sum_{k=1..n-1} (k^n mod n).
0, 1, 3, 2, 10, 13, 21, 4, 27, 45, 55, 38, 78, 77, 105, 8, 136, 93, 171, 146, 210, 209, 253, 172, 250, 325, 243, 294, 406, 365, 465, 16, 528, 561, 595, 402, 666, 665, 741, 372, 820, 673, 903, 726, 945, 897, 1081, 536, 1029, 1125, 1275, 1170, 1378, 765, 1485
Offset: 1
Keywords
Links
- Sebastian Karlsson, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> add(k&^n mod n, k=1..n-1): seq(a(n), n=1..55); # Alois P. Heinz, Feb 13 2021
-
PARI
a(n) = sum(k=1, n-1, lift(Mod(k, n)^n)); \\ Michel Marcus, Jan 22 2021
-
Python
def a(n): return sum([pow(k,n,n) for k in range(1, n)]) for n in range(1, 56): print(a(n), end=', ')
Formula
a(n) = n*A010848(n)/2, if n is odd.
a(n) = n*(n-1)/2, if n is both odd and squarefree.
a(p^e) = (1/2)*(p-1)*p^(2*e-1), if p is an odd prime.
a(2^e) = 2^(e-1).
A341331 a(n) = n^n - (n-1)^n - (n-2)^n - ... - 1^n.
1, 3, 18, 158, 1825, 26141, 446782, 8869820, 200535993, 5085658075, 142947350986, 4410243535402, 148156328308105, 5382924338773177, 210309307208574750, 8791961076113491704, 391581231268402937041, 18510377905675629883959, 925555262359725659407258
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..386
Programs
-
Maple
f:= proc(n) local k; n^n - add(k^n,k=1..n-1) end proc: map(f, [$1..30]); # Robert Israel, Feb 10 2021
-
Mathematica
a[n_] := n^n - Sum[k^n, {k, 0, n - 1}]; Array[a, 20] (* Amiram Eldar, Apr 28 2021 *)
-
PARI
a(n) = n^n-sum(k=0, n-1, k^n);
Comments