A317449 Regular triangle where T(n,k) is the number of multiset partitions of strongly normal multisets of size n into k blocks, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
1, 2, 2, 3, 6, 3, 5, 21, 16, 5, 7, 52, 72, 32, 7, 11, 141, 306, 216, 65, 11, 15, 327, 1113, 1160, 512, 113, 15, 22, 791, 4033, 6052, 3737, 1154, 199, 22, 30, 1780, 13586, 28749, 24325, 10059, 2317, 323, 30, 42, 4058, 45514, 133642, 151994, 82994, 24854, 4493, 523, 42
Offset: 1
Examples
The T(3,2) = 6 multiset partitions are {{1},{1,1}}, {{1},{1,2}}, {{2},{1,1}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}. Triangle begins: 1 2 2 3 6 3 5 21 16 5 7 52 72 32 7 11 141 306 216 65 11 15 327 1113 1160 512 113 15 ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[Join@@mps/@strnorm[n],Length[#]==k&]],{n,6},{k,n}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)} U(m, n)={my(s=0); forpart(p=m, s+=D(p,n)); s} M(n)={Mat(vector(n,k,(U(k,n)-U(k-1,n))~))} { my(A=M(8)); for(n=1, #A~, print(A[n,1..n])) } \\ Andrew Howroyd, Dec 30 2020
Extensions
Terms a(46) and beyond from Andrew Howroyd, Dec 30 2020