A035310
Let f(n) = number of ways to factor n = A001055(n); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
Original entry on oeis.org
1, 4, 12, 47, 170, 750, 3255, 16010, 81199, 448156, 2579626, 15913058, 102488024, 698976419, 4976098729, 37195337408, 289517846210, 2352125666883, 19841666995265, 173888579505200, 1577888354510786, 14820132616197925, 143746389756336173, 1438846957477988926
Offset: 1
a(3) = 12 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=3, f(12)=4, f(30)=5 and 3+4+5 = 12.
From _Gus Wiseman_, Dec 31 2019: (Start)
The a(1) = 1 through a(3) = 12 multiset partitions of strongly normal multisets:
{{1}} {{1,1}} {{1,1,1}}
{{1,2}} {{1,1,2}}
{{1},{1}} {{1,2,3}}
{{1},{2}} {{1},{1,1}}
{{1},{1,2}}
{{1},{2,3}}
{{2},{1,1}}
{{2},{1,3}}
{{3},{1,2}}
{{1},{1},{1}}
{{1},{1},{2}}
{{1},{2},{3}}
(End)
Sequence
A035341 counts the ordered cases. Tables
A093936 and
A095705 distribute the values; e.g. 81199 = 30 + 536 + 3036 + 6181 + 10726 + 11913 + 14548 + 13082 + 21147.
The case with empty intersection is
A317755.
The case of strict parts is
A330783.
Multiset partitions of integer partitions are
A001970.
Unlabeled multiset partitions are
A007716.
-
with(numtheory):
g:= proc(n, k) option remember;
`if`(n>k, 0, 1) +`if`(isprime(n), 0,
add(`if`(d>k, 0, g(n/d, d)), d=divisors(n) minus {1, n}))
end:
b:= proc(n, i, l)
`if`(n=0, g(mul(ithprime(t)^l[t], t=1..nops(l))$2),
`if`(i<1, 0, add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> b(n$2, []):
seq(a(n), n=1..10); # Alois P. Heinz, May 26 2013
-
g[n_, k_] := g[n, k] = If[n > k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d > k, 0, g[n/d, d]], {d, Divisors[n] ~Complement~ {1, n}}]]; b[n_, i_, l_] := If[n == 0, g[p = Product[Prime[t]^l[[t]], {t, 1, Length[l]}], p], If[i < 1, 0, Sum[b[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; a[n_] := b[n, n, {}]; Table[Print[an = a[n]]; an, {n, 1, 13}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1, -n)/prod(i=1, #v, i^v[i]*v[i]!)}
seq(n)={my(s=0); forpart(p=n, s+=D(p,n)); s} \\ Andrew Howroyd, Dec 30 2020
-
from sympy.core.cache import cacheit
from sympy import divisors, isprime, prime
from operator import mul
@cacheit
def g(n, k):
return (0 if n > k else 1) + (0 if isprime(n) else sum(g(n//d, d) for d in divisors(n)[1:-1] if d <= k))
@cacheit
def b(n, i, l):
if n==0:
p = reduce(mul, (prime(t + 1)**l[t] for t in range(len(l))))
return g(p, p)
else:
return 0 if i<1 else sum([b(n - i*j, i - 1, l + [i]*j) for j in range(n//i + 1)])
def a(n):
return b(n, n, [])
for n in range(1, 11): print(a(n)) # Indranil Ghosh, Aug 19 2017, after Maple code
A055884
Euler transform of partition triangle A008284.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1
From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
1
1 2
1 2 3
1 4 4 5
1 4 8 7 7
1 6 12 16 12 11
1 6 17 25 28 19 15
1 8 22 43 49 48 30 22
1 8 30 58 87 88 77 45 30
...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
{{5}} {{1,4}} {{1,1,3}} {{1,1,1,2}} {{1,1,1,1,1}}
{{2,3}} {{1,2,2}} {{1},{1,1,2}} {{1},{1,1,1,1}}
{{1},{4}} {{1},{1,3}} {{1,1},{1,2}} {{1,1},{1,1,1}}
{{2},{3}} {{1},{2,2}} {{2},{1,1,1}} {{1},{1},{1,1,1}}
{{2},{1,2}} {{1},{1},{1,2}} {{1},{1,1},{1,1}}
{{3},{1,1}} {{1},{2},{1,1}} {{1},{1},{1},{1,1}}
{{1},{1},{3}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}}
{{1},{2},{2}}
(End)
-
h:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
end:
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
end:
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
end:
T:= (n, k)-> coeff(b(n$2), x, k):
seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)
A321449
Regular triangle read by rows where T(n,k) is the number of twice-partitions of n with a combined total of k parts.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 4, 5, 5, 0, 1, 4, 8, 8, 7, 0, 1, 6, 13, 19, 16, 11, 0, 1, 6, 17, 27, 32, 24, 15, 0, 1, 8, 24, 47, 61, 62, 41, 22, 0, 1, 8, 30, 63, 99, 111, 100, 61, 30, 0, 1, 10, 38, 94, 158, 209, 210, 170, 95, 42, 0, 1, 10, 45, 119, 229, 328, 382, 348, 259, 136, 56
Offset: 0
Triangle begins:
1
0 1
0 1 2
0 1 2 3
0 1 4 5 5
0 1 4 8 8 7
0 1 6 13 19 16 11
0 1 6 17 27 32 24 15
0 1 8 24 47 61 62 41 22
0 1 8 30 63 99 111 100 61 30
The sixth row {0, 1, 6, 13, 19, 16, 11} counts the following twice-partitions:
(6) (33) (222) (2211) (21111) (111111)
(42) (321) (3111) (1111)(2) (111)(111)
(51) (411) (111)(3) (111)(21) (1111)(11)
(3)(3) (21)(3) (211)(2) (21)(111) (11111)(1)
(4)(2) (22)(2) (21)(21) (211)(11) (11)(11)(11)
(5)(1) (31)(2) (22)(11) (2111)(1) (111)(11)(1)
(3)(21) (221)(1) (11)(11)(2) (1111)(1)(1)
(32)(1) (3)(111) (111)(2)(1) (11)(11)(1)(1)
(4)(11) (31)(11) (11)(2)(11) (111)(1)(1)(1)
(41)(1) (311)(1) (2)(11)(11) (11)(1)(1)(1)(1)
(2)(2)(2) (11)(2)(2) (21)(11)(1) (1)(1)(1)(1)(1)(1)
(3)(2)(1) (2)(11)(2) (211)(1)(1)
(4)(1)(1) (21)(2)(1) (11)(2)(1)(1)
(2)(2)(11) (2)(11)(1)(1)
(22)(1)(1) (21)(1)(1)(1)
(3)(11)(1) (2)(1)(1)(1)(1)
(31)(1)(1)
(2)(2)(1)(1)
(3)(1)(1)(1)
Cf.
A000219,
A001970,
A007716,
A008284,
A055884,
A289501,
A317449,
A317532,
A317533,
A320801,
A320808.
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
g(n, i-1)+ `if`(i>n, 0, expand(g(n-i, i)*x)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i=1, x^n,
b(n, i-1)+ `if`(i>n, 0, expand(b(n-i, i)*g(i$2))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Nov 11 2018
-
Table[Length[Join@@Table[Select[Tuples[IntegerPartitions/@ptn],Length[Join@@#]==k&],{ptn,IntegerPartitions[n]}]],{n,0,10},{k,0,n}]
(* Second program: *)
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, x^n,
g[n, i - 1] + If[i > n, 0, Expand[g[n - i, i]*x]]];
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x^n,
b[n, i - 1] + If[i > n, 0, Expand[b[n - i, i]*g[i, i]]]];
T[n_] := CoefficientList[b[n, n], x];
T /@ Range[0, 12] // Flatten (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
A317776
Number of strict multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers.
Original entry on oeis.org
1, 1, 3, 13, 59, 313, 1847, 11977, 84483, 642405, 5228987, 45297249, 415582335, 4021374193, 40895428051, 435721370413, 4850551866619, 56282199807401, 679220819360775, 8508809310177481, 110454586096508563, 1483423600240661781, 20581786429087269819
Offset: 0
The a(3) = 13 strict multiset partitions:
{{1,1,1}}, {{1},{1,1}},
{{1,2,2}}, {{1},{2,2}}, {{2},{1,2}},
{{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
{{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
Cf.
A001055,
A007716,
A045778,
A255906,
A281116,
A317449,
A317532,
A317583,
A317653,
A317752,
A317757,
A317775.
-
C:= binomial:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
b(n-i*j, min(n-i*j, i-1), k)*C(C(k+i-1, i), j), j=0..n/i)))
end:
a:= n-> add(add(b(n$2, i)*(-1)^(k-i)*C(k, i), i=0..k), k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 16 2019
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Join@@mps/@allnorm[n],UnsameQ@@#&]],{n,9}]
(* Second program: *)
c := Binomial;
b[n_, i_, k_] := b[n, i, k] = If[n==0, 1, If[i<1, 0, Sum[b[n - i*j, Min[n - i*j, i-1], k] c[c[k+i-1, i], j], {j, 0, n/i}]]];
a[n_] := Sum[b[n, n, i] (-1)^(k-i) c[k, i], {k, 0, n}, {i, 0, k}];
a /@ Range[0, 23] (* Jean-François Alcover, Dec 17 2020, after Alois P. Heinz *)
A317775
Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
Original entry on oeis.org
1, 3, 10, 36, 136, 596, 2656, 13187, 68226, 381572, 2233091, 13940407, 90981030, 626911429, 4509031955, 33987610040, 266668955183, 2180991690286, 18512572760155, 163103174973092, 1487228204311039, 14027782824491946, 136585814043190619, 1371822048393658001, 14190528438090988629
Offset: 1
The a(3) = 10 strict multiset partitions:
{{1,1,1}}, {{1},{1,1}},
{{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
{{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[Join@@mps/@strnorm[n],UnsameQ@@#&]],{n,6}]
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)}
seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ Andrew Howroyd, Dec 30 2020
Showing 1-5 of 5 results.
Comments