A317474 The number of solutions to sigma(x) = sigma(x+1) below 10^n, where sigma(x) is the sum of divisors function (A000203).
0, 1, 3, 9, 24, 62, 113, 232, 533, 1097, 2295, 4804, 10135
Offset: 1
Examples
Below 10^3 there are 3 solutions x = 14, 206, 957, hence a(3) = 3.
References
- Wacław Sierpiński, Elementary Theory of Numbers, Warszawa, 1988.
Links
- Pentti Haukkanen, Some computational results concerning the divisor functions d(n) and sigma(n), The Mathematics Student, Vol. 62 (1993), pp. 166-168.
- John L. Hunsucker, Jack Nebb, and Robert E. Stearns, Jr., Computational results concerning some equations involving sigma(n), The Mathematics Student, Vol. 41 (1973), pp. 285-289; entire volume.
- M. Lal, C. Eldridge & P. Gillard, Solutions of sigma(n) = sigma(n+k), 1972, Review in Mathematics of Computation, Vol. 27, No. 123 (1973), p. 676.
- Andrzej Makowski, On Some Equations Involving Functions phi(n) and sigma(n), The American Mathematical Monthly, Vol. 67, No. 7 (1960), pp. 668-670; Correction, ibid., Volume 68, No. 7 (1961), p. 650.
- Walter E. Mientka and Richard L. Vogt, Computational results relating to problems concerning sigma(n), Matematicki Vesnik, Vol. 7, No. 51 (1970), pp. 35-36.
Programs
-
Mathematica
With[{s = Array[DivisorSigma[1,#]&, 10^5]}, Array[Count[Range[10^# - 1], ?(s[[#]] == s[[# + 1]] &)] &, IntegerLength@ Length@ s - 1]] (* after _Michael De Vlieger at A300285 *)
Formula
Conjecture: Limit_{n->oo} a(n)/A300285(n) = 1.
Comments