cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317536 Expansion of 1/(1 + 1/(1 - x) - Product_{k>=1} (1 + x^k)).

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 4, 6, 10, 18, 30, 50, 86, 145, 245, 417, 705, 1193, 2024, 3427, 5804, 9836, 16660, 28220, 47811, 80991, 137197, 232423, 393729, 666982, 1129898, 1914078, 3242495, 5492898, 9305130, 15763154, 26703273, 45236138, 76631348, 129815818, 219911870, 372537244, 631089250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 30 2018

Keywords

Comments

Invert transform of A111133.

Crossrefs

Programs

  • Maple
    seq(coeff(series(1/(1+1/(1-x)-mul(1+x^k,k=1..n)), x,n+1),x,n),n=0..50); # Muniru A Asiru, Jul 30 2018
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
         `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    a:= proc(n) option remember; `if`(n<1, 1,
          add(a(n-i)*(b(i)-1), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Dec 16 2022
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 + 1/(1 - x) - Product[(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[(PartitionsQ[k] - 1) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[(PartitionsQ[k] - 1) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=1} A111133(k)*x^k).