cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317578 Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 1, 12, 2, 19, 19, 1, 22, 1, 27, 28, 1, 31, 1, 31, 3, 38, 1, 42, 1, 46, 1, 50, 1, 50, 3, 57, 2, 51, 7, 64, 3, 71, 2, 70, 5, 77, 4, 85, 3, 86, 5, 84, 9, 104, 2, 104, 5, 108, 6, 108, 8, 1, 123, 5, 122, 9, 119, 14, 136, 9, 147, 7
Offset: 3

Views

Author

Alois P. Heinz, Jul 31 2018

Keywords

Examples

			T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2].
T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]).
T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]).
T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]).
Triangle T(n,k) begins:
   1;
   1;
   2;
   3;
   4;
   5;
   7;
   8;
  10;
  12;
  12, 1;
  12, 2;
  19;
  19, 1;
  22, 1;
		

Crossrefs

Row sums give A306403.
Column k=1 gives A306435.

Programs

  • Maple
    b:= proc(n) option remember; local m, c, i, j, h, w;
          m, c:= proc() 0 end, 0; forget(m);
          for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
            h:= i*j*(n-j-i);
            w:= m(h); w:= w+1; m(h):= w;
            c:= c+x^w-x^(w-1)
          od od; c
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=3..100);
  • Mathematica
    b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c];
    T[n_] := CoefficientList[b[n], x] // Rest;
    T /@ Range[3, 100] // Flatten (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)

Formula

Sum_{k>=1} k * T(n,k) = A001399(n-3) = A069905(n) = A211540(n+2).
Sum_{k>=2} T(n,k) = A060277(n).
min { n >= 0 : T(n,k) > 0 } = A103277(k).