A317578 Number T(n,k) of distinct integers that are product of the parts of exactly k partitions of n into 3 positive parts; triangle T(n,k), n>=3, k>=1, read by rows.
1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 1, 12, 2, 19, 19, 1, 22, 1, 27, 28, 1, 31, 1, 31, 3, 38, 1, 42, 1, 46, 1, 50, 1, 50, 3, 57, 2, 51, 7, 64, 3, 71, 2, 70, 5, 77, 4, 85, 3, 86, 5, 84, 9, 104, 2, 104, 5, 108, 6, 108, 8, 1, 123, 5, 122, 9, 119, 14, 136, 9, 147, 7
Offset: 3
Examples
T(13,2) = 1: only 36 is product of the parts of exactly 2 partitions of 13 into 3 positive parts: [6,6,1], [9,2,2]. T(14,2) = 2: 40 ([8,5,1], [10,2,2]) and 72 ([6,6,2], [8,3,3]). T(39,3) = 1: 1200 ([20,15,4], [24,10,5], [25,8,6]). T(49,3) = 2: 3024 ([24,18,7], [27,14,8], [28,12,9]) and 3600 ([20,20,9], [24,15,10], [25,12,12]). Triangle T(n,k) begins: 1; 1; 2; 3; 4; 5; 7; 8; 10; 12; 12, 1; 12, 2; 19; 19, 1; 22, 1;
Links
- Alois P. Heinz, Rows n = 3..5000, flattened
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; local m, c, i, j, h, w; m, c:= proc() 0 end, 0; forget(m); for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do h:= i*j*(n-j-i); w:= m(h); w:= w+1; m(h):= w; c:= c+x^w-x^(w-1) od od; c end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=3..100);
-
Mathematica
b[n_] := b[n] = Module[{m, c, i, j, h, w} , m[_] = 0; c = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n-j-i); w = m[h]; w++; m[h] = w; c = c + x^w - x^(w-1)]]; c]; T[n_] := CoefficientList[b[n], x] // Rest; T /@ Range[3, 100] // Flatten (* Jean-François Alcover, Jun 13 2021, after Alois P. Heinz *)