cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A103277 Smallest i such that there exists j such that i = x + y + z, j = x*y*z has exactly n solutions in positive integers x <= y <= z.

Original entry on oeis.org

3, 13, 39, 118, 185, 400, 511, 1022, 1287, 2574, 4279, 8558, 11777, 24377, 23554, 46111, 99085, 165490
Offset: 1

Views

Author

David W. Wilson, Jan 27 2005

Keywords

Comments

Least number k such that there exists n partitions of k into 3 parts each having the same product.
The greatest number k such that there exists n partitions of k into 3 parts each having the same product: 18, 102, 492, 1752, ...
The number of members in each "class" of the set having n partitions into 3 parts each having the same product: 12, 54, 147, 397, ....

Examples

			3 = 1+1+1 & 1*1*1 = 1.
13 = 6+6+1 = 9+2+2 & 6*6*1 = 9*2*2 = 36.
39 = 20+15+4 = 24+10+5 = 25+8+6 & 20*15*4 = 24*10*5 = 25*8*6 = 1200.
118 = 54+50+14 = 63+40+15 = 70+30+18 = 72+25+21 & 54*50*14 = 63*40*15 = 70*30*18 = 72*25*21 = 37800.
185 = 90+84+11 = 110+63+12 = 126+44+15 = 132+35+18 = 135+28+22 & 90*84*11 = 110*63*12 = 126*44*15 = 132*35*18 = 135*28*22 = 83160.
400 = 196+180+24 = 245+128+27 = 252+120+28 = 270+98+32 = 280+84+36 = 288+70+42 & 196*180*24 = 245*128*27 = 252*120*28 = 270*98*32 = 280*84*36 = 288*70*42 = 846720.
511 = 260+216+35 = 280+195+36 = 315+156+40 = 325+144+42 = 336+130+45 = 360+91+60 = 364+75+72 & 260*216*35 = 280*195*36 = 315*156*40 = 325*144*42 = 336*130*45 = 360*91*60 = 364*75*72 = 1965600.
1022 = 520+432+70 = 560+390+72 = 630+312+80 = 650+288+84 = 672+260+90 = 675+256+91 = 720+182+120 = 728+150+144 & 520*432*70 = 560*390*72 = 630*312*80 = 650*288*84 = 672*260*90 = 675*256*91 = 720*182*120 = 728*150*144 = 15724800.
1287 = 600+588+99 = 648+539+100 = 720+462+105 = 770+405+112 = 825+336+126 = 840+315+132 = 880+245+162 = 882+240+165 = 891+200+196 & 600*588*99 = 648*539*100 = 720*462*105 = 770*405*112 = 825*336*126 = 840*315*132 = 880*245*162 = 882*240*165 = 891*200*196 = 34927200.
From _Donovan Johnson_, Mar 29 2010: (Start)
2574 = 198+1176+1200 = 200+1078+1296 = 210+924+1440 = 224+810+1540 = 231+768+1575 = 252+672+1650 = 264+630+1680 = 324+490+1760 = 330+480+1764 = 392+400+1782 & 198*1176*1200 = 200*1078*1296 = 210*924*1440 = 224*810*1540 = 231*768*1575 = 252*672*1650 = 264*630*1680 = 324*490*1760 = 330*480*1764 = 392*400*1782 = 279417600.
4279 = 378+1925+1976 = 380+1820+2079 = 385+1710+2184 = 399+1540+2340 = 429+1330+2520 = 440+1274+2565 = 504+1045+2730 = 532+975+2772 = 550+936+2793 = 637+792+2850 = 684+735+2860 & 378*1925*1976 = 380*1820*2079 = 385*1710*2184 = 399*1540*2340 = 429*1330*2520 = 440*1274*2565 = 504*1045*2730 = 532*975*2772 = 550*936*2793 = 637*792*2850 = 684*735*2860 = 1437836400.
8558 = 756+3850+3952 = 760+3640+4158 = 770+3420+4368 = 798+3080+4680 = 858+2660+5040 = 880+2548+5130 = 896+2475+5187 = 1008+2090+5460 = 1064+1950+5544 = 1100+1872+5586 = 1274+1584+5700 = 1368+1470+5720 & 756*3850*3952 = 760*3640*4158 = 770*3420*4368 = 798*3080*4680 = 858*2660*5040 = 880*2548*5130 = 896*2475*5187 = 1008*2090*5460 = 1064*1950*5544 = 1100*1872*5586 = 1274*1584*5700 = 1368*1470*5720 = 11502691200.
11777 = 171+5600+6006 = 175+4914+6688 = 198+3675+7904 = 224+3003+8550 = 228+2925+8624 = 240+2717+8820 = 245+2640+8892 = 385+1512+9880 = 416+1386+9975 = 462+1235+10080 = 540+1045+10192 = 600+936+10241 = 637+880+10260 & 171*5600*6006 = 175*4914*6688 = 198*3675*7904 = 224*3003*8550 = 228*2925*8624 = 240*2717*8820 = 245*2640*8892 = 385*1512*9880 = 416*1386*9975 = 462*1235*10080 = 540*1045*10192 = 600*936*10241 = 637*880*10260 = 5751345600.
24377 = 1196+11400+11781 = 1197+11220+11960 = 1232+9690+13455 = 1254+9200+13923 = 1360+7722+15295 = 1520+6435+16422 = 1547+6270+16560 = 1748+5304+17325 = 1890+4807+17680 = 1932+4680+17765 = 2244+3933+18200 = 2261+3900+18216 = 2448+3575+18354 = 2907+2990+18480 & 1196*11400*11781 = 1197*11220*11960 = 1232*9690*13455 = 1254*9200*13923 = 1360*7722*15295 = 1520*6435*16422 = 1547*6270*16560 = 1748*5304*17325 = 1890*4807*17680 = 1932*4680*17765 = 2244*3933*18200 = 2261*3900*18216 = 2448*3575*18354 = 2907*2990*18480 = 160626866400.
23554 = 342+11200+12012 = 350+9828+13376 = 351+9728+13475 = 396+7350+15808 = 448+6006+17100 = 456+5850+17248 = 480+5434+17640 = 490+5280+17784 = 665+3584+19305 = 770+3024+19760 = 832+2772+19950 = 924+2470+20160 = 1080+2090+20384 = 1200+1872+20482 = 1274+1760+20520 & 342*11200*12012 = 350*9828*13376 = 351*9728*13475 = 396*7350*15808 = 448*6006*17100 = 456*5850*17248 = 480*5434*17640 = 490*5280*17784 = 665*3584*19305 = 770*3024*19760 = 832*2772*19950 = 924*2470*20160 = 1080*2090*20384 = 1200*1872*20482 = 1274*1760*20520 = 46010764800.
(End)
From _Duncan Moore_, Sep 02 2017: (Start)
46111 = 4446+20160+21505 = 4455+19760+21896 = 4576+17595+23940 = 4680+16560+24871 = 4725+16192+25194 = 4807+15600+25704 = 4928+14858+26325 = 5100+13984+27027 = 5187+13600+27324 = 5520+12376+28215 = 5610+12096+28405 = 5712+11799+28600 = 6270+10465+29376 = 7360+8721+30030 = 7735+8280+30096 = 7904+8100+30107 & 4446*20160*21505 = 4455*19760*21896 = 4576*17595*23940 = 4680*16560*24871 = 4725*16192*25194 = 4807*15600*25704 = 4928*14858*26325 = 5100*13984*27027 = 5187*13600*27324 = 5520*12376*28215 = 5610*12096*28405 = 5712*11799*28600 = 6270*10465*29376 = 7360*8721*30030 = 7735*8280*30096 = 7904*8100*30107 = 1927522396800.
99085 = 3770+47120+48195 = 3780+45240+50065 = 3952+37758+57375 = 3978+37107+58000 = 4176+33250+61659 = 4199+32886+62000 = 4216+32625+62244 = 4495+29070+65520 = 4500+29016+65569 = 4914+25296+68875 = 5320+22620+71145 = 7280+15390+76415 = 7395+15120+76570 = 7905+14040+77140 = 8370+13195+77520 = 9367+11718+78000 = 9945+11020+78120 & 3770*47120*48195 = 3780*45240*50065 = 3952*37758*57375 = 3978*37107*58000 = 4176*33250*61659 = 4199*32886*62000 = 4216*32625*62244 = 4495*29070*65520 = 4500*29016*65569 = 4914*25296*68875 = 5320*22620*71145 = 7280*15390*76415 = 7395*15120*76570 = 7905*14040*77140 = 8370*13195*77520 = 9367*11718*78000 = 9945*11020*78120 = 8561475468000.
165490 = 14000+72488+79002 = 14022+71500+79968 = 14080+69615+81795 = 14280+65520+85690 = 14432+63308+87750 = 14820+59040+91630 = 14896+58344+92250 = 16236+49504+99750 = 16380+48790+100320 = 16830+46740+101920 = 17290+44880+103320 = 17589+43776+104125 = 18720+40180+106590 = 19152+39000+107338 = 20090+36720+108680 = 21648+33592+110250 = 23940+30030+111520 = 25840+27720+111930 & 14000*72488*79002 = 14022*71500*79968 = 14080*69615*81795 = 14280*65520*85690 = 14432*63308*87750 = 14820*59040*91630 = 14896*58344*92250 = 16236*49504*99750 = 16380*48790*100320 = 16830*46740*101920 = 17290*44880*103320 = 17589*43776*104125 = 18720*40180*106590 = 19152*39000*107338 = 20090*36720*108680 = 21648*33592*110250 = 23940*30030*111520 = 25840*27720*111930 = 80173757664000
(End)
		

Crossrefs

See A103278 for least j associated with i = A103277(n).

Programs

  • Mathematica
    tanya[n_] := tanya[n] = Max[Length /@ Split[ Sort[Times @@@ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers, Round[n^2/12]]], 3]]]];

Extensions

Additional comments and examples from Joseph Biberstine (jrbibers(AT)indiana.edu) and Robert G. Wilson v, Jul 27 2006
Edited by N. J. A. Sloane, Apr 29 2007
a(10)-a(15) from Donovan Johnson, Mar 29 2010
a(16)-a(18) from Duncan Moore, Sep 02 2017

A060277 Number of m for which a+b+c = n; abc = m has at least two distinct solutions (a,b,c) with 1 <= a <= b <= c.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 1, 0, 1, 1, 3, 1, 1, 1, 1, 3, 2, 7, 3, 2, 5, 4, 3, 5, 9, 2, 5, 6, 9, 5, 9, 14, 9, 7, 5, 10, 10, 11, 18, 7, 11, 16, 14, 12, 12, 23, 19, 13, 18, 11, 20, 19, 32, 17, 21, 18, 25, 19, 21, 27, 22, 21, 31, 27, 24, 28, 42, 34, 33, 21, 28, 31, 35, 47
Offset: 1

Views

Author

Naohiro Nomoto, Mar 23 2001

Keywords

Comments

A triple (a,b,c) as described in the name cannot have c prime. - David A. Corneth, Aug 01 2018

Examples

			(14 = 6+6+2 = 8+3+3, 72 = 6*6*2 = 8*3*3); (14 = 8+5+1 = 10+2+2, 40 = 8*5*1 = 10*2*2); 14 has two "m" variables. so a(14)=2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Count[ Tally[ Times @@@ IntegerPartitions[n, {3}]], {m_,c_} /; c>1]; Array[a, 84] (* Giovanni Resta, Jul 27 2018 *)
  • PARI
    a(n)={my(M=Map()); for(i=n\3, n, for(j=(n-i+1)\2, min(n-1-i, i), my(k=n-i-j); my(m=i*j*k); my(z); mapput(M, m, if(mapisdefined(M, m, &z), z + 1, 1)))); #select(z->z>=2, if(#M, Mat(M)[, 2], []))} \\ Andrew Howroyd, Jul 27 2018

Formula

a(n) = Sum_{k>=2} A317578(n,k). - Alois P. Heinz, Aug 01 2018

Extensions

Description revised by David W. Wilson and Don Reble, Jun 04 2002

A119028 Numbers having at least 3 unique partitions into exactly 3 parts with the same product.

Original entry on oeis.org

39, 45, 49, 53, 62, 64, 65, 70, 71, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 99, 100, 101, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Jul 23 2006, Aug 10 2006

Keywords

Comments

That is, numbers j such that there exist positive integers a1 <= a2 <= a3, b1 <= b2 <= b3, c1 <= c2 <= c3 (unique as triples) with j = a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 and a1*a2*a3 = b1*b2*b3 = c1*c2*c3. The answer to a question raised by Tanya Khovanova, Jul 23 2006.
All integers >= 103 are members of this sequence: see second comment in A103277. - Charles Kluepfel and M. F. Hasler, Nov 23 2018

Examples

			49 = 7 + 18 + 24    7*18*24 = 3024
49 = 8 + 14 + 27    8*14*27 = 3024
49 = 9 + 12 + 28    9*12*28 = 3024
or
49 =  9 + 20 + 20   9*20*20 = 3600
49 = 10 + 15 + 24  10*15*24 = 3600
49 = 12 + 12 + 25  12*12*25 = 3600
		

Crossrefs

Programs

  • Mathematica
    pdt[lst_] := lst[[1]]*lst[[2]]*lst[[3]];
    tanya[n_] := Max[Length /@ Split[Sort[pdt /@ Union[ Partition[Last /@ Flatten[ FindInstance[a + b + c == n && a >= b >= c > 0, {a, b, c}, Integers,(* failsafe *) PartitionsP@n]], 3]] ]]];
    Select[ Range[4, 121], tanya@# >= 3 (*or strictly = ?*) &]
    Select[Range[3, 121], Max[Length /@ Split[Sort[Times @@@ Partition[Last /@ Flatten[FindInstance[a + b + c == # && a >= b >= c > 0, {a, b, c}, Integers,(* cf A069905 *) Round[ #^2/12]]], 3]]]] >= 3 &]

Extensions

More terms from Robert G. Wilson v, Jul 27 2006

A306403 The number of distinct products that can be formed by multiplying the parts of a partition of n into 3 positive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 19, 20, 23, 27, 29, 32, 34, 39, 43, 47, 51, 53, 59, 58, 67, 73, 75, 81, 88, 91, 93, 106, 109, 114, 117, 128, 131, 133, 145, 154, 163, 166, 174, 181, 180, 201, 206, 209, 219, 231, 240, 238, 252, 267, 272, 289, 290, 300, 299, 323, 328, 345, 349, 366, 376
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2019

Keywords

Crossrefs

Row sums of A317578.
Cf. A069905.

Programs

  • Maple
    a:= proc(n) option remember; local m, c, i, j, h, w;
          m, c:= proc() true end, 0; forget(m);
          for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
            h:= i*j*(n-j-i); w:= m(h);
            if w then m(h):= false; c:= c+1 fi
          od od; c
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 13 2019
  • Mathematica
    a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = True; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n - i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w, m[h] = False; c++]]]; c];
    a /@ Range[0, 80] (* Jean-François Alcover, Feb 24 2020, after Alois P. Heinz *)

Formula

a(n) <= A069905(n).

A306435 Number of distinct integers that are product of the parts of exactly one partition of n into 3 positive parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 12, 12, 19, 19, 22, 27, 28, 31, 31, 38, 42, 46, 50, 50, 57, 51, 64, 71, 70, 77, 85, 86, 84, 104, 104, 108, 108, 123, 122, 119, 136, 147, 158, 156, 164, 170, 162, 194, 195, 193, 205, 219, 228, 215, 233, 254, 254, 278
Offset: 0

Views

Author

Alois P. Heinz, Feb 15 2019

Keywords

Crossrefs

Column k=1 of A317578.

Programs

  • Maple
    a:= proc(n) option remember; local m, c, i, j, h, w;
          m, c:= proc() 0 end, 0; forget(m);
          for i to iquo(n, 3) do for j from i to iquo(n-i, 2) do
            h:= i*j*(n-j-i); w:= m(h);
            if w=0 then m(h):= 1; c:= c+1
          elif w=1 then m(h):= 2; c:= c-1
            fi
          od od; c
        end:
    seq(a(n), n=0..80);
  • Mathematica
    a[n_] := a[n] = Module[{m, c = 0, i, j, h, w}, m[_] = 0; For[i = 1, i <= Quotient[n, 3], i++, For[j = i, j <= Quotient[n-i, 2], j++, h = i*j*(n - j - i); w = m[h]; If[w==0, m[h] = 1; c++; If[w==1, m[h] = 2; c--]]]]; c];
    a /@ Range[0, 80] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
Showing 1-5 of 5 results.