A317617 Triangle T read by rows: T(n, k) = (n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2).
1, 5, 5, 14, 15, 16, 34, 34, 34, 34, 63, 64, 65, 66, 67, 111, 111, 111, 111, 111, 111, 172, 173, 174, 175, 176, 177, 178, 260, 260, 260, 260, 260, 260, 260, 260, 365, 366, 367, 368, 369, 370, 371, 372, 373, 505, 505, 505, 505, 505, 505, 505, 505, 505, 505, 666
Offset: 1
Examples
n\k| 1 2 3 4 5 6 ---+------------------------ 1 | 1 2 | 5 5 3 | 14 15 16 4 | 34 34 34 34 5 | 63 64 65 66 67 6 | 111 111 111 111 111 111 ... For n = 1 the matrix M is 1 with column sum 1. For n = 2 the matrix M is 1, 2 4, 3 with column sums 5, 5. For n = 3 the matrix M is 1, 2, 3 6, 5, 4 7, 8, 9 with column sums 14, 15, 16.
Links
- Stefano Spezia, First 150 rows of the triangle, flattened
Crossrefs
Programs
-
GAP
A317617 := function(n) local i, j, t; for i in [1 .. n] do for j in [1 .. i] do t := (i^3 + i)/2 + (j - (i + 1)/2)*(i mod 2); Print(t, "\t"); od; Print("\n"); od; end; A317617(11); # yields sequence in triangular form
-
GAP
Flat(List([1..11],n->List([1..n],k->(n^3+n)/2+(k-(n+1)/2)*(n mod 2)))); # Muniru A Asiru, Aug 24 2018
-
Magma
[[(n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2): k in [1..n]]: n in [1..11]];
-
Maple
a:=(n,k)->(n^3+n)/2+(k-(n+1)/2)*modp(n,2): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Aug 24 2018
-
Mathematica
f[n_] := Table[SeriesCoefficient[(x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(-3 + y) - 3*x^2*(-1 + y) + y))/((-1 + x)^4*(1 + x)^2*(-1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]] T[i_, j_, n_] := If[OddQ@ i, j + n*(i - 1), n*i - j + 1]; f[n_] := Plus @@@ Transpose[ Table[T[i, j, n], {i, n}, {j, n}]]; Array[f, 11] // Flatten (* Robert G. Wilson v, Aug 01 2018 *) f[n_] := Table[SeriesCoefficient[1/4 E^(-x + y) (1 - x - 2 y + E^(2 x) (-1 + 3 x + 6 x^2 + 2 x^3 + 2 y)), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]] (* Stefano Spezia, Jan 10 2019 *)
-
Maxima
sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i^3+i)/2+(j-(i+1)/2)*mod(i, 2), j, 1, i), " ")); display_triangle(10);
-
PARI
M(i,j,n) = if (i % 2, j + n*(i-1), n*i - j + 1); T(n, k) = sum(i=1, n, M(i,k,n)); tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 09 2018
-
R
# by formula for (n in 1:11){ t <- c(n, "") for(j in 1:n){ t <- c(t, (n^3+n)/2+(j-(n+1)/2)*(n%%2), "") } cat(t, "\n") } # yields sequence in triangular form (MATLAB and FreeMat) for(i=1:11); for(j=1:i); t=(i^3 + i)/2 + (j - (i + 1)/2)*mod(i,2); fprintf('%0.f\t', t); end fprintf('\n'); end % yields sequence in triangular form
Formula
G.f.: x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(- 3 + y) - 3*x^2*(- 1 + y) + y)/((-1 + x)^4*(1 + x)^2*(-1 + y)^2).
E.g.f.: (1/4)*exp(-x + y)*(1 - x - 2*y + exp(2*x)*(-1 + 3*x + 6*x^2 + 2*x^3 + 2*y)). - Stefano Spezia, Jan 10 2019
Comments