cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317617 Triangle T read by rows: T(n, k) = (n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2).

Original entry on oeis.org

1, 5, 5, 14, 15, 16, 34, 34, 34, 34, 63, 64, 65, 66, 67, 111, 111, 111, 111, 111, 111, 172, 173, 174, 175, 176, 177, 178, 260, 260, 260, 260, 260, 260, 260, 260, 365, 366, 367, 368, 369, 370, 371, 372, 373, 505, 505, 505, 505, 505, 505, 505, 505, 505, 505, 666
Offset: 1

Views

Author

Stefano Spezia, Aug 01 2018

Keywords

Comments

T(n, k) is the sum of the terms of the k-th column of an n X n square matrix M formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern (proved). The n X n square matrix M is defined as M[i, j, n] = j + n*(i - 1) if i is odd and M[i, j, n] = n*i - j + 1 if i is even (see the examples below).
The rows of even indices of the triangle T are made of all the same repeating number.

Examples

			n\k|   1   2   3   4   5   6
---+------------------------
1  |   1
2  |   5   5
3  |  14  15  16
4  |  34  34  34  34
5  |  63  64  65  66  67
6  | 111 111 111 111 111 111
...
For n = 1 the matrix M is
  1
with column sum 1.
For n = 2 the matrix M is
  1, 2
  4, 3
with column sums 5, 5.
For n = 3 the matrix M is
  1, 2, 3
  6, 5, 4
  7, 8, 9
with column sums 14, 15, 16.
		

Crossrefs

Cf. A006003, A000027, A000035, A037270 (row sums).
A317614(n): the trace of the n X n square matrix M.
A074147(n): the elements of the antidiagonal of the n X n square matrix M.
A241016(n): the triangle of the row sums of the n X n square matrix M.
A246697(n): the right diagonal of the triangle T.

Programs

  • GAP
    A317617 := function(n)
    local i, j, t;
    for i in [1 .. n] do
       for j in [1 .. i] do
          t := (i^3 + i)/2 + (j - (i + 1)/2)*(i mod 2);
          Print(t, "\t");
       od;
       Print("\n");
    od;
    end;
    A317617(11); # yields sequence in triangular form
    
  • GAP
    Flat(List([1..11],n->List([1..n],k->(n^3+n)/2+(k-(n+1)/2)*(n mod 2)))); # Muniru A Asiru, Aug 24 2018
  • Magma
    [[(n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2): k in [1..n]]: n in [1..11]];
    
  • Maple
    a:=(n,k)->(n^3+n)/2+(k-(n+1)/2)*modp(n,2): seq(seq(a(n,k),k=1..n),n=1..11); # Muniru A Asiru, Aug 24 2018
  • Mathematica
    f[n_] := Table[SeriesCoefficient[(x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(-3 + y) - 3*x^2*(-1 + y) + y))/((-1 + x)^4*(1 + x)^2*(-1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]]
    T[i_, j_, n_] := If[OddQ@ i, j + n*(i - 1), n*i - j + 1]; f[n_] := Plus @@@ Transpose[ Table[T[i, j, n], {i, n}, {j, n}]]; Array[f, 11] // Flatten  (* Robert G. Wilson v, Aug 01 2018 *)
    f[n_] := Table[SeriesCoefficient[1/4 E^(-x + y) (1 - x - 2 y + E^(2 x) (-1 + 3 x + 6 x^2 + 2 x^3 + 2 y)), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]] (* Stefano Spezia, Jan 10 2019 *)
  • Maxima
    sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i^3+i)/2+(j-(i+1)/2)*mod(i, 2), j, 1, i), " ")); display_triangle(10);
    
  • PARI
    M(i,j,n) = if (i % 2, j + n*(i-1), n*i - j + 1);
    T(n, k) = sum(i=1, n, M(i,k,n));
    tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 09 2018
    
  • R
    # by formula
    for (n in 1:11){
       t <- c(n, "")
       for(j in 1:n){
          t <- c(t, (n^3+n)/2+(j-(n+1)/2)*(n%%2), "")
       }
       cat(t, "\n")
    } # yields sequence in triangular form
    (MATLAB and FreeMat)
    for(i=1:11);
       for(j=1:i);
          t=(i^3 + i)/2 + (j - (i + 1)/2)*mod(i,2);
          fprintf('%0.f\t', t);
       end
       fprintf('\n');
    end % yields sequence in triangular form
    

Formula

T(n, k) = A006003(n) + (k - (A000027(n) + 1)/2)*A000035(n).
G.f.: x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(- 3 + y) - 3*x^2*(- 1 + y) + y)/((-1 + x)^4*(1 + x)^2*(-1 + y)^2).
E.g.f.: (1/4)*exp(-x + y)*(1 - x - 2*y + exp(2*x)*(-1 + 3*x + 6*x^2 + 2*x^3 + 2*y)). - Stefano Spezia, Jan 10 2019