A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n.
1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887
Offset: 0
Keywords
Examples
The a(4) = 22 free pure symmetric multifunctions: 1[1[1[1]]] 1[1[2]] 1[3] 2[2] 4 1[1[1][1]] 1[2[1]] 3[1] 1[1][1[1]] 2[1[1]] 1[1[1]][1] 1[1][2] 1[1][1][1] 1[2][1] 1[1[1,1]] 2[1][1] 1[1,1[1]] 1[1,2] 1[1][1,1] 2[1,1] 1[1,1][1] 1[1,1,1]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{{}},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]]; Table[Sum[Length[exprUsing[y]],{y,IntegerPartitions[n]}],{n,0,6}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1],v)} \\ Andrew Howroyd, Aug 28 2018
Extensions
Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018
Comments