cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.

Examples

			The first twenty Mathematica expressions:
   1: o
   2: o[]
   3: o[][]
   4: o[o]
   5: o[][][]
   6: o[o][]
   7: o[][][][]
   8: o[o[]]
   9: o[][o]
  10: o[o][][]
  11: o[][][][][]
  12: o[o[]][]
  13: o[][o][]
  14: o[o][][][]
  15: o[][][][][][]
  16: o[o,o]
  17: o[o[]][][]
  18: o[][o][][]
  19: o[o][][][][]
  20: o[][][][][][][]
		

Crossrefs

First differs from A277615 at a(128) = 5, A277615(128) = 6.

Programs

  • Mathematica
    nn=100;
    radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n===1,x,With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Table[exp[n],{n,1,nn}]

Formula

a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].

A317654 Number of free pure symmetric multifunctions whose leaves are a strongly normal multiset of size n.

Original entry on oeis.org

1, 3, 26, 375, 6696, 159837, 4389226, 144915350, 5377002075, 227624621051, 10632808475596, 550932945236121, 31062550998284221, 1907051034025848314, 126052420069459211076, 8956882232940915920404, 679298518935625486287703, 54868537321267493152151502, 4696952405203792017289469056
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(3) = 26 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];
    Table[Sum[Length[exprUsing[got[y]]],{y,IntegerPartitions[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + p*(sExp(p)-1)); p}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021

A317653 Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n.

Original entry on oeis.org

1, 3, 34, 602, 14872, 472138, 18323359, 840503724, 44489123726, 2668985463839, 178960530393633, 13263068003965046, 1076580864432281157, 94987639225399100006, 9051397653144246683937, 926407121115738135640677, 101357200280211387377806719, 11804887470887800839909147484
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(3) = 34 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];
    Table[Sum[Length[exprUsing[got[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,6}]
  • PARI
    \\ here R(n,1) is A052893.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 14 2018

A317876 Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
Also the number of free orderless identity Mathematica expressions with one atom and n positions.

Examples

			The a(5) = 10 FOIs:
  o[o[o]]
  o[o][o]
  o[o[][]]
  o[o,o[]]
  o[][o[]]
  o[][][o]
  o[o[]][]
  o[][o][]
  o[o][][]
  o[][][][]
		

Crossrefs

Programs

  • Mathematica
    allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Union[Sort/@Tuples[allIdExpr/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
    Table[Length[allIdExpr[n]],{n,12}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 19 2018

A317655 Number of free pure symmetric multifunctions with leaves a multiset whose multiplicities are the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 3, 8, 10, 15, 50, 35, 37, 96, 144, 160, 299, 184, 589, 840, 2483, 578, 1729, 750, 10746, 1627, 2246, 3578, 9357, 3367, 47420, 6397, 212668, 3155, 9818, 17280, 15666, 18250, 966324, 84232, 54990, 12471, 4439540, 45015
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(6) = 8 free pure symmetric multifunctions:
  1[1[2]]
  1[2[1]]
  2[1[1]]
  1[1][2]
  1[2][1]
  2[1][1]
  1[1,2]
  2[1,1]
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[exprUsing[got[Reverse[primeMS[n]]]]],{n,40}]

A317656 Number of free pure symmetric multifunctions whose leaves are the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 2, 10, 1, 8, 1, 8, 2, 2, 1, 35, 1, 2, 3, 8, 1, 15, 1, 37, 2, 2, 2, 50, 1, 2, 2, 35, 1, 15, 1, 8, 8, 2, 1, 160, 1, 8, 2, 8, 1, 35, 2, 35, 2, 2, 1, 96, 1, 2, 8, 144, 2, 15, 1, 8, 2, 15, 1, 299, 1, 2, 8, 8, 2, 15, 1, 160
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(12) = 8 free pure symmetric multifunctions are 1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1].
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[exprUsing[primeMS[n]]],{n,100}]

A300626 Number of inequivalent colorings of free pure symmetric multifunctions (with empty expressions allowed) with n positions.

Original entry on oeis.org

1, 1, 3, 11, 43, 187, 872, 4375, 23258, 130485, 767348, 4710715, 30070205, 198983975, 1361361925, 9607908808, 69812787049, 521377973359, 3996036977270, 31389624598631, 252408597286705, 2075472033455894, 17434190966525003, 149476993511444023, 1307022313790487959
Offset: 0

Views

Author

Gus Wiseman, Aug 17 2018

Keywords

Comments

A free pure symmetric multifunction (with empty expressions allowed) f in EOME is either (case 1) a positive integer, or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where k >= 0, h is in EOME, each of the g_i for i = 1, ..., k is in EOME, and for i < j we have g_i <= g_j under a canonical total ordering of EOME, such as the Mathematica ordering of expressions.
Also the number of inequivalent colorings of orderless Mathematica expressions with n positions.

Examples

			Inequivalent representatives of the a(3) = 11 colorings:
  1[1,1]  1[2,2]  1[1,2]  1[2,3]
  1[1[]]  1[2[]]
  1[][1]  1[][2]
  1[1][]  1[2][]
  1[][][]
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + x*p*sExp(p)); p}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 30 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 30 2020

A317659 Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
    1
    1    0
    1    1    0
    1    3    1    0
    1    6    5    1    0
    1   10   17    7    1    0
    1   15   43   33    9    1    0
    1   21   92  118   55   11    1    0
    1   28  174  341  252   82   13    1    0
    1   36  302  845  935  463  115   15    1    0
    1   45  490 1864 2921 2103  769  153   17    1    0
    1   55  755 3755 7981 8012 4145 1187  197   19    1    0
		

Crossrefs

Programs

  • Mathematica
    maxUsing[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h],Union[Sort/@Tuples[maxUsing/@p]]}],{p,IntegerPartitions[g]}]]];
    Table[Length[Select[maxUsing[n],Length[Position[#,"o"]]==k&]],{n,12},{k,n}]
Showing 1-8 of 8 results.