A317829 Number of set partitions of multiset {1, 2, 2, 3, 3, 3, ..., n X n}.
1, 1, 4, 52, 2776, 695541, 927908528, 7303437156115, 371421772559819369, 132348505150329265211927, 355539706668772869353964510735, 7698296698535929906799439134946965681, 1428662247641961794158621629098030994429958386, 2405509035205023556420199819453960482395657232596725626
Offset: 0
Keywords
Examples
For n = 2 we have a multiset {1, 2, 2} which can be partitioned as {{1}, {2}, {2}} or {{1, 2}, {2}} or {{1}, {2, 2}} or {{1, 2, 2}}, thus a(2) = 4.
Crossrefs
Programs
-
Maple
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+ `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0, g(n/d, d)), d=divisors(n) minus {1, n})) end: a:= n-> g(mul(ithprime(i)^i, i=1..n)$2): seq(a(n), n=0..5); # Alois P. Heinz, Jul 26 2020
-
Mathematica
chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}]; facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[facs[chern[n]]],{n,3}] (* Gus Wiseman, Aug 21 2020 *)
-
PARI
\\ See A318284 for count. a(n) = {if(n==0, 1, count(vector(n,i,i)))} \\ Andrew Howroyd, Aug 31 2020
Formula
Extensions
a(0)=1 prepended and a(7) added by Alois P. Heinz, Jul 26 2020
a(8)-a(13) from Andrew Howroyd, Aug 31 2020
Comments