cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317911 Expansion of Product_{k>=2} 1/(1 - x^k)^p(k), where p(k) = number of partitions of k (A000041).

Original entry on oeis.org

1, 0, 2, 3, 8, 13, 31, 53, 112, 201, 393, 710, 1343, 2409, 4431, 7912, 14255, 25223, 44787, 78519, 137700, 239347, 415343, 716001, 1231326, 2106287, 3593141, 6102679, 10335269, 17437476, 29337139, 49192762, 82261930, 137148782, 228061165, 378198633, 625623318, 1032301633
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 10 2018

Keywords

Comments

First differences of A001970.

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 10 2018
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/(1 - x^k)^PartitionsP[k], {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[Sum[Sum[PartitionsP[k] x^(j k)/j, {k, 2, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]
    b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d PartitionsP[d], {d, Divisors[k]}] b[n - k], {k, 1, n}]/n]; Differences[Table[b[n], {n, -1, 37}]]

Formula

G.f.: exp(Sum_{j>=1} Sum_{k>=2} p(k)*x^(j*k)/j).