cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317925 Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).

Original entry on oeis.org

1, 1, 1, 7, 2, 1, 3, 25, 5, 1, 5, 7, 6, 3, 2, 363, 8, 5, 9, 7, 3, 5, 11, 25, 8, 3, 13, 21, 14, 1, 15, 1335, 5, 4, 6, 35, 18, 9, 6, 25, 20, 3, 21, 35, 5, 11, 23, 363, 33, 4, 8, 21, 26, 13, 10, 75, 9, 7, 29, 7, 30, 15, 15, 9923, 12, 5, 33, 7, 11, 3, 35, 125, 36, 9, 8, 63, 15, 3, 39, 363, 139, 10, 41, 21, 16, 21, 14, 125, 44, 5, 18, 77, 15, 23
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A000010, A317926 (denominators).
Cf. also A046643, A317831.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Numerator @ Array[f, 100] (* Amiram Eldar, Dec 12 2022 *)
  • PARI
    A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2);
    A317925(n) = numerator(A317925perA317926(n));
    
  • PARI
    \\ Memoized implementation:
    memo = Map();
    A317925perA317926(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (eulerphi(n)-sumdiv(n,d,if((d>1)&&(dA317925perA317926(d)*A317925perA317926(n/d),0)))/2); mapput(memo,n,v); (v)));
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 09 2025

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d 1.
Sum_{k=1..n} A317925(k) / A317926(k) ~ Pi^(-3/2) * n^2 * sqrt(3/(2*log(n))) * (1 + (1/2 - gamma/2 + 3*zeta'(2)/Pi^2) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 10 2025