cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317977 a(n) = A003010(n-2) mod (2^n - 1).

Original entry on oeis.org

1, 0, 14, 0, 23, 0, 149, 205, 95, 1736, 779, 0, 4193, 20400, 25439, 0, 221468, 0, 1036394, 840107, 1751891, 6107895, 5639594, 8772568, 66322529, 60611448, 99083624, 458738443, 989927528, 0, 3038229779, 5238898821, 393215, 11960838285, 27264928469, 117093979072, 274827575393, 276971366821
Offset: 2

Views

Author

Thomas Ordowski, Aug 12 2018

Keywords

Comments

For n > 2, the Mersenne number 2^n - 1 is a prime if and only if a(n) = 0. See comments in A003010.

Crossrefs

Programs

  • PARI
    a(n) = {my(pow = 2^n-1, res = Mod(4, pow)); for(i = 1, n-2, res = res^2 - 2); lift(res)}
    first(n) = vector(n, i, a(i+1)) \\ David A. Corneth, Aug 12 2018
    
  • Python
    def A317977(n):
        m = 2**n-1
        c = 4 % m
        for _ in range(n-2):
            c = (c**2-2) % m
        return c # Chai Wah Wu, Oct 08 2018

Formula

a(prime(n)) = A095847(n).

Extensions

More terms from Michel Marcus and David A. Corneth, Aug 12 2018