cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A179270 G.f. satisfies: inverse of function A(x) + i*A(x)^2 equals the conjugate, A(x) - i*A(x)^2, where i=sqrt(-1).

Original entry on oeis.org

1, 0, -1, 0, 4, 0, -21, 0, 122, 0, -758, 0, 4958, 0, -33509, 0, 233810, 0, -1641150, 0, 12364368, 0, -71807506, 0, 1354944972, 0, 33794258600, 0, 2524565441138, 0, 186642439700891, 0, 16196862324254354, 0, 1602823227559245434, 0, 179707702260054046760, 0
Offset: 1

Views

Author

Paul D. Hanna, Jul 06 2010

Keywords

Examples

			G.f.: A(x) = x - x^3 + 4*x^5 - 21*x^7 + 122*x^9 - 758*x^11 +...
A(x)^2 = x^2 - 2*x^4 + 9*x^6 - 50*x^8 + 302*x^10 - 1928*x^12 +...
A(x) + i*A(x)^2 = x - i*x^2 - x^3 + 2*i*x^4 + 4*x^5 - 9*i*x^6 - 21*x^7 - 50*i*x^8 + 122*x^9 +...
where Series_Reversion[A(x) + i*A(x)^2] = A(x) - i*A(x)^2.
The i-th iteration of A(x) + i*A(x)^2 is a real-valued series in x, and begins:
x - x^2 + x^3 - 2*x^5 + 3*x^6 + x^7 - 38*x^8/3 + 70*x^9/3 - 2*x^10 - 266*x^11/3 + 214*x^12 - 436*x^13/3 - 469*x^14 + 12649*x^15/9 +...
		

Crossrefs

Programs

  • Maxima
    T(n, m):=if n=m then 1 else 1/2*(m/n*binomial(2*n-m-1, n-1)*(%i)^(n+m)*(-1)^n-(sum(T(k, m)*sum(T(n, i)*binomial(k, i-k)*(-%i)^(i-k), i, k, n), k, m+1, n-1)+sum(T(n, i)*binomial(m, i-m)*(-%i)^(i-m), i, m+1, n)));
    makelist(T(n, 1), n, 1, 10); /* Vladimir Kruchinin, Apr 30 2012 */
  • PARI
    {a(n)=local(A=x+sum(k=3,n-1,a(k)*x^k)+x*O(x^n));if(n==1,1,if(n%2==0,0,-polcoeff((subst(A,x,A-I*A^2)+I*subst(A,x,A-I*A^2+x*O(x^n))^2),n)/2))}
    
  • PARI
    /* Faster vectorized version: */
    {ooo=100;A=[1];B=x;C=(1-sqrt(1-4*(x+x^2+x*O(x^ooo))))/2;A182399=[1];
    for(n=1,ooo,A182399=concat(A182399,0);B=x*Ser(A182399);
    A182399[n]=Vec((B+subst(C+x*O(x^n),x,serreverse(B)))/2)[n];
    A=Vec(-I*subst(x*Ser(A182399),x,I*serreverse(x+I*x^2+x^2*O(x^n))));
    print1(A[n],", "))}
    

Formula

G.f. satisfies: A( A(x) - i*A(x)^2 ) = x*Catalan(-i*x) = i*(1-sqrt(1+4*i*x))/2.
a(n)=T(n,1), where T(n, m)=1/2*(m/n*binomial(2*n-m-1, n-1)*(%i)^(n+m)*(-1)^n-(sum(k=m+1..n-1, T(k, m)*sum(i=k..n, T(n, i)*binomial(k, i-k)*(-%i)^(i-k)))+sum(i=m+1..n, T(n, i)*binomial(m, i-m)*(-%i)^(i-m)))), n>m, T(n,n)=1. [Vladimir Kruchinin, Apr 30 2012]

A277292 G.f. A(x) satisfies: Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2.

Original entry on oeis.org

1, 1, 4, 21, 122, 758, 4958, 33509, 233810, 1641150, 12364368, 71807506, 1354944972, -33794258600, 2524565441138, -186642439700891, 16196862324254354, -1602823227559245434, 179707702260054046760, -22656977557634759678794, 3191199098536326709613676, -499206960572108744520132444, 86277300996554233583925645468, -16395890677314419248813441481150
Offset: 1

Views

Author

Paul D. Hanna, Oct 12 2016

Keywords

Examples

			G.f.: A(x) = x + x^3 + 4*x^5 + 21*x^7 + 122*x^9 + 758*x^11 + 4958*x^13 + 33509*x^15 + 233810*x^17 + 1641150*x^19 + 12364368*x^21 +...
such that Series_Reversion( A(x) + A(x)^2 ) = A(x) - A(x)^2, where
A(x)^2 = x^2 + 2*x^4 + 9*x^6 + 50*x^8 + 302*x^10 + 1928*x^12 + 12849*x^14 + 88122*x^16 + 621022*x^18 + 4411180*x^20 +...
A(x) + A(x)^2 = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 9*x^6 + 21*x^7 + 50*x^8 + 122*x^9 + 302*x^10 + 758*x^11 + 1928*x^12 + 4958*x^13 + 12849*x^14 + 33509*x^15 + 88122*x^16 + 233810*x^17 + 621022*x^18 + 1641150*x^19 + 4411180*x^20 +...
Also,
A( A(x) + A(x)^2 ) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 +...
which equals the Catalan series (A000108).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(Oxn=x*O(x^(2*n)), A = x +Oxn); for(i=1, 2*n, A = A + (x - subst(A+A^2, x, A-A^2 ))/2); polcoeff(A, 2*n-1)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^(2*n-1) satisfies:
(1) A( A(x) + A(x)^2 ) = C(x),
(2) C( A(x) - A(x)^2 ) = A(x),
(3) A( A(x) - A(x)^2 ) = -C(-x),
(4) A( A(x-x^2) + A(x-x^2)^2 ) = x,
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers, A000108.
Showing 1-2 of 2 results.