A318051 Irregular triangle read by rows: T(n,k) is the number of prime knots with n crossings whose signatures are k in absolute value.
0, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 1, 0, 3, 0, 2, 0, 1, 9, 0, 8, 0, 3, 0, 1, 11, 0, 21, 0, 12, 0, 4, 0, 1, 54, 0, 68, 0, 32, 0, 1, 0, 1, 148, 228, 0, 124, 0, 44, 7, 0, 1, 619, 0, 900, 0, 461, 0, 162, 0, 34
Offset: 3
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------------------- 3 | 0 0 1 4 | 1 5 | 0 0 1 0 1 6 | 2 0 1 7 | 1 0 3 0 2 0 1 8 | 9 0 8 0 3 0 1 9 | 11 0 21 0 12 0 4 0 1 10 | 54 0 68 0 32 0 10 0 1 11 | 148 0 228 0 124 0 44 0 7 0 1 12 | 619 0 900 0 461 0 162 0 34
References
- P. R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 151-154.
- W. B. R. Lickorish, An introduction to Knot Theory, Springer, 1997, Table 8.1, p. 85.
Links
- J. C. Cha and C. Livingston, KnotInfo: Table of Knot Invariants
- J. C. Cha and C. Livingston, Signature
- K. Murasugi, On a certain numerical invariant of link types, Trans. Am. Math. Soc. Vol. 117 (1965), 387-422.
- A. Stoimenow, Table of the signature
- Eric Weisstein's World of Mathematics, Knot Signature
- Wikipedia, Signature of a knot
- Index entries for sequences related to knots
Comments