cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A318059 a(n) is the numerator of sigma(sigma(n))/n.

Original entry on oeis.org

1, 2, 7, 2, 12, 14, 15, 3, 14, 39, 28, 14, 24, 30, 4, 2, 39, 28, 42, 24, 3, 91, 60, 7, 32, 48, 10, 30, 72, 13, 63, 13, 124, 60, 124, 28, 60, 84, 40, 117, 96, 6, 84, 56, 56, 195, 124, 14, 80, 64, 65, 171, 120, 20, 39, 45, 62, 117, 168, 8, 96, 126, 10, 2, 224, 403, 126, 78, 84, 403
Offset: 1

Views

Author

Michel Marcus, Aug 14 2018

Keywords

Examples

			Fractions begin with 1, 2, 7/3, 2, 12/5, 14/3, 15/7, 3, 14/9, 39/10, 28/11, 14/3, ...
		

Crossrefs

Cf. A000203 (sigma), A051027.
Cf. A098223 (when denominator is 1), A318060 (denominator).

Programs

  • Maple
    seq(numer((numtheory:-sigma@@2)(n)/n),n=1..100); # Robert Israel, Aug 14 2018
  • Mathematica
    a[n_] := Numerator[DivisorSigma[1, DivisorSigma[1, n]]/n]; Array[a, 100] (* Amiram Eldar, Apr 04 2024 *)
  • PARI
    a(n) = numerator(sigma(sigma(n))/n);

Formula

For n=2, sigma(sigma(n)) = 4, so a(2) = 2.

A318083 Numbers m such that sigma(sigma(m))/sigma(m) <= sigma(m)/m.

Original entry on oeis.org

1, 2, 4, 8, 9, 12, 16, 18, 25, 32, 36, 48, 50, 52, 64, 72, 80, 81, 84, 90, 98, 100, 108, 112, 128, 144, 150, 156, 162, 180, 192, 196, 200, 208, 225, 240, 242, 244, 252, 256, 288, 289, 292, 300, 320, 324, 336, 338, 360, 372, 388, 392, 400, 420, 432, 441, 444, 448, 450, 468, 484
Offset: 1

Views

Author

Michel Marcus, Aug 15 2018

Keywords

Comments

A318059 and A318060 give f(n) = sigma(sigma(n))/n.
Let g(n) = sigma(n)/n, then f(n) = g(sigma(n))*g(n).
For g(), see A017665 and A017666.
Then this sequence are the integers m for which g(sigma(m)) <= g(m).
Are there other integers than 1, for which sigma(sigma(m))/sigma(m) = sigma(m)/m?

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{s = DivisorSigma[1, n]}, DivisorSigma[1, s]/s <= s/n]; Select[Range[500], q] (* Amiram Eldar, Apr 04 2024 *)
  • PARI
    isok(n) = my(sn=sigma(n)); sigma(sn)/sn <= sn/n;

A318084 Numbers m such that sigma(sigma(m))/m is a square.

Original entry on oeis.org

1, 15, 50, 100, 168, 1023, 1444, 1470, 1600, 1944, 3179, 3822, 4000, 5120, 5776, 6174, 9025, 10752, 12348, 14440, 15125, 21970, 26250, 28416, 28665, 29127, 37544, 39200, 45630, 47151, 49392, 52500, 60984, 66125, 67200, 69819, 71485, 77175, 80000, 90250, 100254, 102300, 102400
Offset: 1

Views

Author

Michel Marcus, Aug 15 2018

Keywords

Comments

This is a necessary condition to have sigma(sigma(m))/sigma(m) = sigma(m)/m.
Are there other integers than 1, for which this is satisfied?
If m is an odd number such that sigma(sigma(m^2))/2 is a square, and p is in A000043 such that 2^p-1 does not divide sigma(m^2), then 2^(p-1)*m^2 is in the sequence. Such m include 5, 19, 161, 543, 1031, 1899, 3035, 6673. Thus if A000043 is infinite, so is this sequence. - Robert Israel, Aug 17 2018

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t; t:= (numtheory:-sigma @@2)(n)/n; issqr(numer(t)) and issqr(denom(t)) end proc:select(filter, [$1..200000]); # Robert Israel, Aug 17 2018
  • Mathematica
    Select[Range[10^5], IntegerQ@ Sqrt[ DivisorSigma[1, DivisorSigma[1, #]] #] &] (* Giovanni Resta, Aug 19 2018 *)
  • PARI
    isok(n) = issquare(sigma(sigma(n))/n);

A331019 a(n) is the least k such that the denominator(sigma(sigma(k*n))/(k*n)) equals n.

Original entry on oeis.org

1, 15, 1, 8, 1, 144, 1, 16, 1, 1, 1, 8, 1, 255, 3, 16, 1, 12, 1, 2, 7, 1, 1, 288, 1, 18, 21, 8, 1, 84, 1, 13, 1, 11, 1, 4096, 1, 4, 3, 270, 1, 2448, 1, 2, 3, 1, 1, 16, 1, 420, 3, 1, 1, 124, 3, 16, 3, 128, 1, 616, 1, 85, 3, 16, 1, 1, 1, 8, 3, 1, 1, 32, 1, 64
Offset: 1

Views

Author

Ray Chandler, Jan 09 2020

Keywords

Comments

a(n) is the least k such that the A318060(k*n) equals n.

Crossrefs

Cf. A000203 (sigma), A051027 (sigma(sigma)), A318060.

Programs

  • PARI
    a(n) = my(k=n); while (denominator(sigma(sigma(k))/k) != n, k+=n); k/n;

Formula

a(n) = A331033(n)/n.

A331033 a(n) is the least k such that the denominator(sigma(sigma(k))/k) equals n.

Original entry on oeis.org

1, 30, 3, 32, 5, 864, 7, 128, 9, 10, 11, 96, 13, 3570, 45, 256, 17, 216, 19, 40, 147, 22, 23, 6912, 25, 468, 567, 224, 29, 2520, 31, 416, 33, 374, 35, 147456, 37, 152, 117, 10800, 41, 102816, 43, 88, 135, 46, 47, 768, 49, 21000, 153, 52, 53, 6696, 165, 896, 171, 7424, 59, 36960
Offset: 1

Views

Author

Michel Marcus, Jan 08 2020

Keywords

Comments

a(n) is the least k such that the A318060(k) equals n.
a(n) is divisible by n.

Crossrefs

Cf. A000203 (sigma), A051027 (sigma(sigma)), A318060.

Programs

  • PARI
    a(n) = my(k=n); while (denominator(sigma(sigma(k))/k) != n, k+=n); k;

A353751 a(n) = gcd(n, sigma(sigma(n))), where sigma is the sum of divisors function.

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 1, 4, 1, 2, 15, 16, 1, 2, 1, 4, 21, 1, 1, 24, 1, 2, 9, 4, 1, 15, 1, 8, 1, 2, 1, 4, 1, 2, 3, 2, 1, 42, 1, 4, 3, 1, 1, 16, 1, 2, 3, 1, 1, 18, 5, 8, 3, 2, 1, 60, 1, 2, 21, 64, 1, 1, 1, 4, 3, 1, 1, 24, 1, 2, 1, 4, 7, 6, 1, 16, 1, 2, 1, 84, 5, 2, 3, 2, 1, 6, 1, 4, 3, 1, 5, 8, 1, 2, 1, 4
Offset: 1

Views

Author

Antti Karttunen, May 08 2022

Keywords

Crossrefs

Cf. A019278 (positions of fixed points, where a(n)=n).
Cf. also A009194, A295310.

Programs

  • PARI
    A353751(n) = gcd(n, sigma(sigma(n)));

Formula

a(n) = gcd(n, A051027(n)).
a(n) = A051027(n) / A318059(n) = n / A318060(n).
Showing 1-6 of 6 results.