cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A318108 a(n) = Sum_{k=0..n} (3*n-2*k)!/((n-k)!^3*k!)*(-3)^k, n >= 0.

Original entry on oeis.org

1, 3, 27, 303, 3771, 49653, 677979, 9496791, 135572859, 1963940073, 28783474677, 425872190241, 6350923156059, 95341185353781, 1439433069482547, 21839152342265703, 332769145298428539, 5089688869615075521, 78108038975852093889, 1202268428203687094493, 18555675891246972931221
Offset: 0

Views

Author

Gheorghe Coserea, Sep 20 2018

Keywords

Comments

Diagonal of rational function 1/(1 - (x + y + z - 3*x*y*z)).

Examples

			A(x) = 1 + 3*x + 27*x^2 + 303*x^3 + 3771*x^4 + 49653*x^5 + 677979*x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3n-2k)!/(((n-k)!)^3 k!) (-3)^k,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Mar 01 2019 *)
  • PARI
    a(n) = sum(k=0, n, (3*n-2*k)!/((n-k)!^3*k!)*(-3)^k);
    vector(21, n, a(n-1))

Formula

G.f. y=A(x) satisfies: 0 = x*(6*x - 1)*(27*x^3 + 27*x^2 - 18*x + 1)*y'' + (486*x^4 + 216*x^3 - 189*x^2 + 36*x - 1)*y' + 3*(3*x + 1)*(18*x^2 - 6*x + 1)*y.
Recurrence: n^2*(3*n - 4)*a(n) = 3*(3*n - 2)*(6*n^2 - 10*n + 3)*a(n-1) - 9*(9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) - 27*(n-2)^2*(3*n - 1)*a(n-3). - Vaclav Kotesovec, Mar 01 2019
From Peter Bala, Mar 16 2023: (Start)
a(n) = Sum_{k = 0..n} (-3)^(n-k)*binomial(n,k)*binomial(n + 2*k,n)* binomial(2*k,k).
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. (End)
G.f.: hypergeom([1/3, 2/3],[1],27*x/(1+3*x)^3)/(1+3*x). - Mark van Hoeij, Nov 28 2024

A318109 a(n) = Sum_{k=0..n} (3*n-2*k)!/((n-k)!^3*k!)*(-2)^k.

Original entry on oeis.org

1, 4, 46, 652, 10186, 168304, 2884456, 50723824, 909192538, 16538659384, 304391739796, 5655971294824, 105929883322576, 1997228410630912, 37871584674309376, 721672204654077952, 13811327854028171098, 265324110145941691912, 5114208160758838538044, 98874597697991698311832, 1916741738060370782929036
Offset: 0

Views

Author

Gheorghe Coserea, Sep 20 2018

Keywords

Comments

Diagonal of rational function 1/(1 - (x + y + z - 2*x*y*z)).

Examples

			A(x) = 1 + 4*x + 46*x^2 + 652*x^3 + 10186*x^4 + 168304*x^5 + 2884456*x^6 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (3*n-2*k)!/((n-k)!^3*k!)*(-2)^k);
    vector(21, n, a(n-1))

Formula

G.f. y=A(x) satisfies: 0 = x*(x - 1)*(4*x - 1)*(8*x^2 + 20*x - 1)*y'' + (96*x^4 + 64*x^3 - 120*x^2 + 42*x - 1)*y' + 4*(2*x + 1)*(4*x^2 - 2*x + 1)*y.
From Peter Bala, Mar 16 2023: (Start)
n^2*(3*n - 4)*a(n) = (3*n - 2)*(21*n^2 - 35*n + 10)*a(n-1) - 4*(9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) - 8*(3*n - 1)*(n - 2)^2*a(n-3) with a(0) = 1, a(1) = 4 and a(2) = 46.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. (End)
a(n) ~ (1 + sqrt(3))^(3*n + 1) / (2*Pi*sqrt(3)*n). - Vaclav Kotesovec, Mar 17 2023
G.f.: hypergeom([1/3, 2/3],[1],27*x/(1+2*x)^3)/(1+2*x). - Mark van Hoeij, Nov 28 2024

A318105 Triangle read by rows: T(n,k) = (4*n - 3*k)!/((n-k)!^4*k!).

Original entry on oeis.org

1, 24, 1, 2520, 120, 1, 369600, 22680, 360, 1, 63063000, 4804800, 113400, 840, 1, 11732745024, 1072071000, 33633600, 415800, 1680, 1, 2308743493056, 246387645504, 9648639000, 168168000, 1247400, 3024, 1, 472518347558400, 57718587326400, 2710264100544, 61108047000, 672672000, 3243240, 5040, 1
Offset: 0

Views

Author

Gheorghe Coserea, Oct 15 2018

Keywords

Comments

Diagonal of rational function R(x,y,z,w,t) = 1/(1 - (x+y+z+w + t*x*y*z*w)) with respect to x,y,z,w, i.e., T(n,k) = [(xyzw)^n*t^k] R(x,y,z,w,t).
Annihilating differential operator: x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1)).

Examples

			A(x;t) = 1 + (24 + t)*x + (2520 + 120*t + t^2)*x^2 + (369600 + 22680*t + 360*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0]            [1]           [2]         [3]        [4]      [5]   [6]
[0] 1;
[1] 24,            1;
[2] 2520,          120,          1;
[3] 369600,        22680,        360,        1;
[4] 63063000,      4804800,      113400,     840,       1;
[5] 11732745024,   1072071000,   33633600,   415800,    1680,    1;
[6] 2308743493056, 246387645504, 9648639000, 168168000, 1247400, 3024, 1;
[7] ...
		

Crossrefs

Programs

  • Mathematica
    t[n_,k_] := (4*n - 3*k)!/((n-k)!^4*k!); Table[t[n, k], {n, 0, 10}, {k , 0,n}] // Flatten  (* Amiram Eldar, Nov 07 2018 *)
  • PARI
    T(n, k) = (4*n-3*k)!/(k!*(n-k)!^4);
    concat(vector(8, n, vector(n, k, T(n-1, k-1))))
    /*
    test:
    P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
      return(a);
    };
    apply_diffop(p, s) = {
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
    };
    \\ diagonal property:
    x='x; y='y; z='z; w='w; t='t;
    diag(1/(1 - (x+y+z+w + t*x*y*z*w)), 9, [x, y, z, w]) == vector(9, n, P(n-1))
    \\ annihilating diffop:
    y = Ser(vector(101, n, P(n-1)), 'x);
    p = x^2*(3*t*x + 1)^2*((t*x - 1)^4 - 256*x)*Dx^3 + 3*x*(3*t*x + 1)*((t*x - 1)^3*(6*t^2*x^2 + 3*t*x - 1) - 384*x*(t*x + 1))*Dx^2 + (t*x - 1)*((t*x - 1)*(63*t^4*x^4 + 66*t^3*x^3 - 18*t*x + 1) + 48*x*(15*t*x + 17))*Dx + (t*x - 1)*(t*(9*t^4*x^4 + 12*t^3*x^3 + 6*t^2*x^2 - 12*t*x + 1) - 24*(15*t*x - 1));
    0 == apply_diffop(p, y)
    */

Formula

Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A125143(n) = P_n(-27), A008977(n) = P_n(0), A082488(n) = P_n(1).
Showing 1-3 of 3 results.