A318144 T(n, k) = (-1)^k*k!*P(n, k), where P(n, k) is the number of partitions of n of length k. Triangle read by rows, 0 <= k <= n.
1, 0, -1, 0, -1, 2, 0, -1, 2, -6, 0, -1, 4, -6, 24, 0, -1, 4, -12, 24, -120, 0, -1, 6, -18, 48, -120, 720, 0, -1, 6, -24, 72, -240, 720, -5040, 0, -1, 8, -30, 120, -360, 1440, -5040, 40320, 0, -1, 8, -42, 144, -600, 2160, -10080, 40320, -362880
Offset: 0
Examples
[0] [1], [1] [0, -1], [2] [0, -1, 2], [3] [0, -1, 2, -6], [4] [0, -1, 4, -6, 24], [5] [0, -1, 4, -12, 24, -120], [6] [0, -1, 6, -18, 48, -120, 720], [7] [0, -1, 6, -24, 72, -240, 720, -5040], [8] [0, -1, 8, -30, 120, -360, 1440, -5040, 40320], [9] [0, -1, 8, -42, 144, -600, 2160, -10080, 40320, -362880]
Links
- Alois P. Heinz, Rows n = 0..150, flattened (first 45 rows from Peter Luschny)
Programs
-
Magma
/* As triangle: */ [[(-1)^k*#Partitions(n,k)*Factorial(k): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Aug 20 2018
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)+expand(b(n-i, min(n-i, i))*x)) end: T:= n-> (p-> seq(i!*coeff(p, x, i)*(-1)^i, i=0..n))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Sep 18 2019
-
Mathematica
t[n_, k_] := (-1)^k k! (IntegerPartitions[n, {k}] // Length); Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > 1, b[n, i - 1], 0] + Expand[b[n - i, Min[n - i, i]]*x]]; T[n_] := Function[p, Table[i!*Coefficient[p, x, i]*(-1)^i, {i, 0, n}]][ b[n, n]]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)
-
Sage
from sage.combinat.partition import number_of_partitions_length def A318144row(n): return [(-1)^k*number_of_partitions_length(n, k)*factorial(k) for k in (0..n)] for n in (0..9): print(A318144row(n))